NSC 298 - Theories of Object Recognition

Thursdays, 5:30-7

Center for Neuroscience conference room

Reading List (tentative)


IT and object invariance (Trish/Kati)

Tanaka K (1996) Inferotemporal Cortex and Object Vision.  Annual Review of Neuroscience, 19:109-39.

Rolls ET (2000) Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition.  Neuron, 27:205-18. (pdf)

Fusiform gyrus (Trevor/Noah)

Kanwisher N (2000)  Domain Specificity in Face Perception. Nature Neuroscience, 3(8):759-63.  (pdf)

Tarr MJ and Gauthier I (2000) FFA: A Flexible Fusiform Area for Subordinate-Level Visual Processing Automatized by Expertise.  Nature Neuroscience, 3(8):764-9.  (pdf)

Gauthier I, Tarr MJ,  Anderson AW, Skudlarski P, Gore JC  (1999)  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects.   Nature Neuroscience 2 :568 - 573 (1999)  (pdf)

Computational models

Scaling laws and scale-invariance (Bruno)

Van Essen DC, Olshausen B, Anderson CH, Gallant JL (1991 )  Pattern Recognition, Attention, and Information Bottlenecks in the Primate Visual System. In: Proc. SPIE Conf. on Visual Information Processing: From Neurons to Chips, 1473:17-28.

Olshausen BA, Anderson CH, Van Essen DC (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. The Journal of Neuroscience, 13(11), 4700-4719.

Luce RD, Krumhansl CL (1988)  Measurement, scaling, and psychophysics.  In:  Stevens' Handbook of Experimental Psychology, Vol. 1.  pp. 3-74.  (optional)

Pandemonium models

Mel BW (1997)  SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recogniton.  Neural Computation, 9:777-804. (gzipped ps)

Fukushima K  (1980)   Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position.   Biological Cybernetics, 36:193-202

Riesenhuber M and Poggio P (1999)  Hierarchical Models of Object Recognition in Cortex.   Nature Neuroscience, 2(11):1019-1025.  (pdf)

Tarr MJ (1999)  News on Views: Pandemonium Revisited (COMMENTARY). Nature Neuroscience, 2(11):932-5.  (pdf)

Ullman S, Sali E (2000)  Visual features of intermediate complexity and their use in classification.  (preprint)


Levels of categorization (Scott/Jeff - 10/5)

Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P (1976)  Basic Objects in Natral Categories.   Cognitive Psychology,  8:382-439.

Jolicouer P, Gluck, MA and Kosslyn SM (1984)  Pictures and Naming: Making the Connection.  Cognitive Psychology, 16:243-75.

Geons vs. model-based representations (Snezana)

Biederman I  (1995)  Visual Object Recognition.  In An Invitation to Cognitive Science, Vol. 2: Visual Cognition.   S. Kosslyn, D. Osherson, Eds.  MIT Press,  pp. 121-65.

Tarr MJ, Williams P, Hayward WG, Gauthier I  (1998)  Three-dimensional object recognition is viewpoint dependent.  Nature Neuroscience 1:275 - 277.  (pdf)


Intraub H (1999)  Understanding and Remembering Briefly Glimpsed Pictures: Implications for Visual Scanning and Memory.  In: Fleeting Memories: Cognition of Brief Visual Stimuli, V. Coltheart, Ed. MIT Press. pp. 47-70.

Shapiro KL and Luck SJ (1999)  The Attentional Blink: A Front-End Mechanism for Fleeting Memories.  In:  Fleeting Memories: Cognition of Brief Visual Stimuli V Coltheart, Ed.  MIT Press, , pp. 95-118.

Scene change blindness (Jeff/Henry)

Simons DJ and Levin DT (1998)  Failure to Detect Changes to People During a Real-World Interaction.   Psychonomic Bulletin & Review,  5(4):644-9.

Levin DT and Simons DJ (1997)  Failure to Detect Changes to Attended Objects in Motion Pictures.   Psychonomic Bulletin & Review,   4(4):501-6.

Rensink RA, O'Regan JK, Clark JJ (2000)  On the Failure to Detect Changes in Scenes Across Brief Interruptions.   Visual Cognition,   7(1-3):127-45.