
A probability primer

Bruno A. Olshausen

March 1, 2004

Abstract

The French mathematician Laplace declared that probability theory is “com-
mon sense reduced to calculation.” In fact, it is just that - a way of numerically
encoding our state of knowledge about variables in the world. Often the vari-
ables we care about are some measured data, and we wish to make inferences
from this data in the face of uncertainty. But every waking moment, the brain
is inundated with “data” in the form of activities impinging upon its sensory
epithelium, and it must make inferences about what is “out there” in the world
in order to guide appropriate actions. In this sense, probability theory provides
a useful quantitative tool for understanding information processing in nervous
systems. Here, we shall review the key ideas from probability theory that are
commonly encountered in the study of the brain. Much of this material is
adapted from the textbook by S. Ross, “A first course in probability theory.”

Discrete probability

If we have a variable that takes on a discrete set of outcomes, such as a coin (heads
or tails) or a pair of dice (numbers 1-12), then a probability may be assigned to each
outcome. The probability assigned may be based on direct empirical data (e.g, by
collecting a histogram of the states occupied by the variable over a long length of
time), or it may reflect our inferred belief about states that the variable is likely to
occupy (analogous to the way a horse-better evaluates the odds on different horses).

Axioms

The probability, P , that a discrete valued variable, X, occupies a specific state, x, is
a number between zero and one:

0 ≤ P (X = x) ≤ 1 . (1)

The sum of the probabilities of all outcomes equals one:∑
x

P (X = x) = 1 . (2)

From here on out we shall use the shorthand P (x) to stand for P (X = x).
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Distributions

Uniform

The uniform distribution is the most trivial form of distribution, where all outcomes
are equally likely:

P (x) = 1/n , x = 1, ...n . (3)

Bernoulli

A Bernoulli random variable is simply a binary variable (i.e., it occupies one of two
states) with

P (1) = p (4)

P (0) = 1− p (5)

Binomial

If we draw n independent samples from a Bernoulli variable, the total number of 1’s
that we get is a binomial random variable. The binomial distribution tells us that
the probability of getting a total of i one’s from n draws is

P (i) =

(
n
i

)
pi (1− p)(n−i) . (6)

where p is as specified in (4,5). The notation

(
n
i

)
neans “n choose i.” It tells us

the number of ways we could get i one’s out of n draws:(
n
i

)
=

n!

(n− i)!i!
. (7)

The probability of any particular outcome with i one’s and n−i zero’s is pi (1−p)(n−i).

Since this can happen

(
n
i

)
different ways, the total probability of getting i one’s is

thus given by equation 6.

Poisson

When n is large and p is small, one may approximate the binomial distribution with
a Poisson distribution

P (i) = e−λ λi

i!
(8)

where λ may be thought of as a rate parameter that corresponds to np in the binomial
distribution, or in general the number of one’s occurring in some interval. Among the
variables that have been observed to have Poisson distributions are 1) the number of
misprints on a page of a book, 2) the number of wrong telephone numbers dialed in a
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day, 3) the number of α-particles discharged in a fixed period of time from radioactive
material, and 4) the number of spikes discharged from a neuron in a fixed period of
time, T , when T is less than 100-200 ms. In the latter case, it should be noted that
when natural stimuli are used neurons tend not to be Poisson.

Joint distributions

The probability of two or more variables occupying a combined state, X1 = x1,
X2 = x2,... Xn = xn, is denoted by P (x1, x2, ..., xn) or P (x). Such a distribution
obeys the same axioms as above, 0 ≤ P (x) ≤ 1, and

∑
x P (x) = 1.

Conditional probability

We can express the interaction between variables using the conditional probability

P (x|y) =
P (x, y)

P (y)
(9)

where the | notation means “given that.” Thus, P (x|y) refers to the probability that
X = x given that Y = y. It should make sense intuitively then that the probability
of a joint state x, y, is just P (x|y) multiplied by P (y), which is another way of stating
equation 9.

Factorial distribution

When a set of variables are statistically independent—i.e, the outcome of one variable
has no effect on the others—then P (x|y) will be the same as P (x). In this case, the
joint distribution is said to be factorial, meaning that P (x, y) is given by the product
of the distributions for each variable alone:

P (x, y) = P (x)P (y) (10)

or more generally

P (x1, x2, ..., xn) = P (x1)× P (x2)× ...× P (xn) (11)

= ΠiP (xi) (12)

Continuous variables

A variable that takes on a value along a continuum, such as voltage or light intensity,
is assigned a probability density function, or p.d.f., which measures the amount of
probability per unit of the variable. For example, the p.d.f. for the voltage on a car
battery, p(V ), might be a bell-shaped function that is peaked at 12 volts with some
spread on either side. The value of the function at a given point does not denote the
probability of being exactly at that voltage (since the continuum of voltage is infinitely
divisible), but rather the “probability per volt.” If you want to know the probability
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of the voltage being found between 11.9 and 12.1, then you would integrate p(V ) over
that interval:

P (11.9 ≤ V ≤ 12.1) =
∫ 12.1

11.9
p(V )dV . (13)

Thus, if you want to speak of the probability of a continuous variable being at a
certain value, you must necessarily specify a level of precision.

Axioms

We denote the p.d.f. of a continous random variable x as p(x). An important dis-
tinction between a p.d.f. and the probability of a discrete variable is that a p.d.f. is
bounded only below by zero, but is not bounded above

p(x) ≥ 0 . (14)

It must in any case integrate to one∫ ∞

−∞
p(x)dx = 1 . (15)

Distributions

Uniform

The most trivial form of p.d.f. is the uniform distribution, in which the variable has
non-zero probability over a finite interval from a to b. The p.d.f. over this interval is
then

p(x) =
1

b− a
a ≤ x ≤ b (16)

Normal (Gaussian)

Perhaps the most ubiquitous distribution of all is the normal distribution which forms
the classic bell-shaped curve:

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (17)

Although the normal distribution was introduced by the French mathematician de
Moivre as an approximation to the binomial distribution when n is large, Gauss
somehow managed to stamp his name on it. So a continuous variable distributed as
in (17) is commonly referred to as a “Gaussian distributed” variable. The parameter
µ sets the center or mean of the distribution, while the parameter σ sets its spread
or variance1

The reason the normal distribution is so commonly used to describe natural phe-
nomena is due to the Central Limit Theorem, which states that the sum of N random
variables will tend to be normally distributed as N →∞.

1See the 10 Deutsche Mark note for illustration.
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Exponential (Laplacian)

The exponential distribution

p(x) = λe−λx , x ≥ 0 (18)

is often used to describe the amount of time one must wait before an event occurs
(such as an earthquake). In its two-sided form,

p(x) =
λ

2
e−λ|x| , −∞ ≤ x ≤ ∞ (19)

it is known as the Laplacian and is often used to model natural image statistics.

Function of a random variable

Let’s say we have a random variable x with distribution px(x). Now if another variable
y is a deterministic function of x

y = f(x) , (20)

what is the corresponding distribution of py(y)? The way to figure it out is shown
in figure 1. The basic idea is that the area under the distribution must be preserved

x

y

x

px(x)

y

p y
(y

)

dx

dy

�
�
�
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f(x)

Figure 1: Distributions px(x) and py(y) must have equal area for corresponding in-
tervals.
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for corresponding intervals in x and y. In other words, if we integrate px(x) over the
interval x0 − δx

2
≤ x ≤ x0 + δx

2
, we should get the same answer as when we integrate

py(y) over the interval f(x0 − δx
2
) ≤ y ≤ f(x0 + δx

2
):

∫ x0+ δx
2

x0− δx
2

px(x)dx =
∫ f(x0+ δx

2
)

f(x0− δx
2

)
py(y)dy (21)

or in the limit as δx → 0 we have

px(x0)δx = py(f(x0))δf(x0) . (22)

Thus,

py(y) = px(x)

[
dy

dx

]−1

. (23)

In other words, you get the p.d.f. for y by simply taking the p.d.f. for x and weighting
it by the inverse derivative of f . Note that this holds only if f is monotonic.

Generating random variables

Equation 23 suggests a method for drawing samples from an arbitrary distribution.
Most computers are equipped with a random number generator that produces num-
bers uniformly distributed between 0 and 1. So, if we let py(y) be the uniform
distribution between 0 and 1 and px(x) is the desired distribution, then we have

1 = px(x)[f ′]−1 . (24)

Thus,

f(x) =
∫ x

−∞
px(u)du . (25)

In other words, if we take random numbers generated from the uniform [0,1] distri-
bution, pass them through the inverse of the cumulative distribution for px(x), what
comes out are numbers that are distributed as though they came from px(x)!

Moments

A moment provides a way of characterizing the distribution of a random variable with
a single number that is obtained by taking the expected value of a function of the
variable. A few popular moments are described here.

Mean (first moment)

The mean, µ, of a distribution attempts to characterize the average value of a random
variable drawn from the distribution:

µ = E[x] (26)

=
∫

p(x) x dx (27)
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where E[] denotes “expected value.” Note that for some distributions—e.g., a bi-
modal distribution—the mean does not in any sense characterize the typical value of
a variable drawn from the distribution.

Variance (second moment)

The variance, σ2, of a distribution attempts to characterize its spread:

σ2 = E[(x− µ)2] (28)

=
∫

p(x) (x− µ)2 dx (29)

For a Gaussian distribution, the variance is simply given by the parameter σ2 (by
definition). A Poisson distribution has its variance equal to the mean, which is given
by the parameter λ. Thus, a test that is typically applied in order to tell whether
a random variable is consistent with a Poisson process is to calculate the ratio of
variance to mean to see if it is one.

Skew (third moment)

The skew of a distribution attempts to characterize its lopsidedness:

skew =
1

σ3
E[(x− µ)3] (30)

=
1

σ3

∫
p(x) (x− µ)3 dx . (31)

If the distribution is perfectly symmetric then the skew will be zero. But simply ob-
serving that the skew is zero does not necessarily imply the distribution is symmetric.

Kurtosis (proportional to fourth moment)

The kurtosis attempts to measure the peakedness of a distribution:

κ =
1

σ4
E[(x− µ)4]− 3 (32)

=
1

σ4

∫
p(x) (x− µ)4 dx− 3 . (33)

The reason for subtracting three is so that κ = 0 for a Gaussian distribution. A
distribution with positive kurtosis may be more peaked or have heavier tails than a
Gaussian, while a distribution with negative kurtosis may look more like a loaf of
bread.
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Principle of maximum entropy

More generally, we may take the expected value of any arbitrary function φ(x) in an
attempt to characterize a distribution:

α = E[φ(x)] (34)

=
∫

p(x) φ(x) dx . (35)

What can we say about the distribution from the value obtained from the expected
value of such an arbitrary function? The principle of maximum entropy states that if
we have to guess a particular distribution, we should choose the one with maximum
entropy that satisfies the constraints. If the constraints are of the form (35), then the
distribution we choose should be of the form

p(x) =
1

Zλ

e−λφ(x) (36)

where λ is choosen to satisfy the constraint (35), and Zλ is a normalizing constant.
For example, the Gaussian distribution is the maximum entropy distribution for a
fixed variance.
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