
Sparse Coding

Barlow (1972)

Barlow (1972)

The second dogma goes beyond the evidence, but it
attempts to make sense out of it. It asserts that the
overall direction or aim of information processing in
higher sensory centres is to represent the input as
completely as possible by activity in as few neurons
as possible (Barlow, 1961, 1969b). In other words,
not only the proportion but also the actual number of
active neurons, K, is reduced, while as much
information as possible about the input is preserved.

y

x

x̂

W

M

min
W,M

|x − x̂|2

Autoencoder networks

y

x

x̂

W

M

Limited capacity
units

Bottleneck may also be in the form of limited capacity units.
Optimal strategy in this case is to whiten.

V1 is highly overcomplete
Temporal reconstruction o f the image

The homunculus also has to face t'he problem that the image is often nioving

continuously, but is only represented by impulses a t discrete moments in time. I n

these days he often has to deal with visual images derived from cinema screens and

television sets tha t represent scenes sampled a t quite long intervals, and we know

IVb

0 1mm
C I

FIGURE8. A tracing of the outlines of the granule cells of area 17 in layers IVb and IVc of

monkey cortex, where the incoming geniculate fibres termmate (from fig. 3 c of Hubel &

Wiesel 1972) The dots at the top lndlcate the calct~lated separation of the sample points

coming In from the re t~na , allowing tmo per cycle of the higllest spatial frequency

resolved. The misaligned vernier a t rlght has a displac~ment corresponding to one sixth

of the sample separation, or 5' for 60 cycle/deg optimum aclutp The 'grain' in the

cortex appears to be much finer than In the retlna.

that he does a good job a t interpreting them even when the sample rate is only

16 s-l, as in amateur movies. One only has to watch a kitten playing, a cttt hunt-

ing, or a bird alighting a t dusk among the branches of a tree. to appreciate the

importance and difficulty of the ~ ~ i s u a l appreciation of motion. Considering this

overwhelming importance it is surprising to find how slow are the receptors and

how long is the latency for the message in the optic nerve, and e~-en more surprising

to find how well the system works in spite of this slowness.

Recent psychophysical work has improved our understanding of these problems.

At one time i t was thought that image motion aided resolution (Narshall SI Talbot

1942),but this was hard to believe because of the bll~rring effect of the eye's long

LGN
afferents

layer 4
cortex

Barlow (1981)

y

x

x̂

W

M

(sparse)

Sparse codes impose a different type of bottleneck
by limiting the number of active units

Dense codes
(e.g., ascii)

Sparse,
distributed codes

Local codes
(e.g., grandmother cells)

.

N
K

N()2N

From: Foldiak & Young (1995)

ai

I(x,y)

How to form a sparse code of images?

significantly correlated, the above scheme could learn to
code colour and type on separate sets of units, and to
represent a particular car as a combination of activity in
those units (a 'yellow' and a 'Volkswagen' unit). Gener-
alization may then occur specifically along one feature or
aspect of the input. An output correlated only with
'Volkswagen' would get connected to the unit in the
'type' group, and it could generalise to other colours
even when it has a large Hamming distance from the
original.

7 Combination of Hebbian and anti-Hebbian
mechanisms

In the following network, the detection of suspicious
coincidences is performed by conventional Hebbian
feed-forward weights, but units are connected by anti-
Hebbian inhibitory feedback connections (Fig. 1). For
linear units, this arrangement has been shown to per-
form principal component analysis by projecting into the
subspace of the eigenvectors corresponding to the n
largest eigenvalues of the covariance matrix of the input
(Frldifik 1989).' The model discussed here has similar
architecture, but units here are nonlinear, so it can learn
not only about the second-order statistics, i.e. pairwise
correlations between input elements, but also about
higher-order dependencies and features of the input.

In order to achieve sparse coding, an additional
mechanism is assumed: each unit tries to keep its prob-
ability of firing close to a fixed value by adjusting its
own threshold. A unit that has been inactive for a long
time gradually lowers its threshold (i.e~ decreases its
selectivity), while a frequently active unit gradually
becomes more selective by raising its threshold.

The network has m inputs: xy,j = 1 . . . m, and n
representation units: Yi, i = 1 . . . n. Because of the feed-
back and the nonlinearity of the units, the output
cannot be calculated in a single step as in the case of
one unit, because the final output here is influenced by
the feedback from the other units. Provided that the
feedback is symmetric (wij = wji), the network is guar-
anteed to settle into a stable state after an initial
transient (Hopfield 1982). This transient was simulated
by numerically solving the following differential equa-
tion for each input pattern:

dY*dt = f ~ i qiyxj+ j=~l w~y* - t i) - y*

where q,j is the weight of the connection from xy to
y~, w U is the connection between units y, and yj and the
nonlinearity of the units is represented by the function
f(u) = 1/(1 +exp(-Au)) . The outputs are then calcu-
lated by rounding the values of y* in the stable state to
0 or 1 (Yi = 1 if y* > .5, y~ = 0 otherwise). The feedfor-
ward weights are initially random, 2 and the feedback
weights are 0.

' A similar but asymmetrically connected network has also been
proposed for this purpose by Rubner and Sehulten (1990)
2 Selected from a uniform distribution on [0, 1] and normalised to
unit length (Y-jq~ = 1)

167

x 1

x 2

x m

Yl

Y2

Yn

Fig. 1. The architecture of the proposed network. Empty circles
are Hebbian excitatory, flied circles are anti-Hebbian inhibitory
connections

On each learning trial, after the output has been
calculated, the connections and thresholds are modified
according to the following rules:

anti-Hebbian rule-
Aw iy = - ot(yiyj - p2)
(if i = j or w;j > 0 then w # : = 0)

Hebbian rule-

Aq# = flYi (xj - qij)
threshold modification-

Ati = Y(Yi - P) .
Here ct, fl and T are small positive constants and p is

the specified bit probability. The Hebbian rule contains
a weight decay term in order to keep the feed-forward
weight vectors bounded. The anti-Hebbian rule is inher-
ently stable so no such normalizing term is necessary.
Note that these rules only contain terms related to the
units that the weight connect, so all the information
necessary for the modification is available locally at the
site of the connection.

In the next two sections some aspects of the model
will be demonstrated on two simple, artificially gener-
ated distributions.

8 Example 1: learning fines

Patterns consisting of random horizontal and vertical
lines were presented to the network. This example was
chosen for comparison with that given by Rumelhart
and Zipser (1985) to demonstrate competitive learning.

momon m mo
Fig. 2. A random sample of the patterns presented to the network in
Example 1

significantly correlated, the above scheme could learn to
code colour and type on separate sets of units, and to
represent a particular car as a combination of activity in
those units (a 'yellow' and a 'Volkswagen' unit). Gener-
alization may then occur specifically along one feature or
aspect of the input. An output correlated only with
'Volkswagen' would get connected to the unit in the
'type' group, and it could generalise to other colours
even when it has a large Hamming distance from the
original.

7 Combination of Hebbian and anti-Hebbian
mechanisms

In the following network, the detection of suspicious
coincidences is performed by conventional Hebbian
feed-forward weights, but units are connected by anti-
Hebbian inhibitory feedback connections (Fig. 1). For
linear units, this arrangement has been shown to per-
form principal component analysis by projecting into the
subspace of the eigenvectors corresponding to the n
largest eigenvalues of the covariance matrix of the input
(Frldifik 1989).' The model discussed here has similar
architecture, but units here are nonlinear, so it can learn
not only about the second-order statistics, i.e. pairwise
correlations between input elements, but also about
higher-order dependencies and features of the input.

In order to achieve sparse coding, an additional
mechanism is assumed: each unit tries to keep its prob-
ability of firing close to a fixed value by adjusting its
own threshold. A unit that has been inactive for a long
time gradually lowers its threshold (i.e~ decreases its
selectivity), while a frequently active unit gradually
becomes more selective by raising its threshold.

The network has m inputs: xy,j = 1 . . . m, and n
representation units: Yi, i = 1 . . . n. Because of the feed-
back and the nonlinearity of the units, the output
cannot be calculated in a single step as in the case of
one unit, because the final output here is influenced by
the feedback from the other units. Provided that the
feedback is symmetric (wij = wji), the network is guar-
anteed to settle into a stable state after an initial
transient (Hopfield 1982). This transient was simulated
by numerically solving the following differential equa-
tion for each input pattern:

dY*dt = f ~ i qiyxj+ j=~l w~y* - t i) - y*

where q,j is the weight of the connection from xy to
y~, w U is the connection between units y, and yj and the
nonlinearity of the units is represented by the function
f(u) = 1/(1 +exp(-Au)) . The outputs are then calcu-
lated by rounding the values of y* in the stable state to
0 or 1 (Yi = 1 if y* > .5, y~ = 0 otherwise). The feedfor-
ward weights are initially random, 2 and the feedback
weights are 0.

' A similar but asymmetrically connected network has also been
proposed for this purpose by Rubner and Sehulten (1990)
2 Selected from a uniform distribution on [0, 1] and normalised to
unit length (Y-jq~ = 1)

167

x 1

x 2

x m

Yl

Y2

Yn

Fig. 1. The architecture of the proposed network. Empty circles
are Hebbian excitatory, flied circles are anti-Hebbian inhibitory
connections

On each learning trial, after the output has been
calculated, the connections and thresholds are modified
according to the following rules:

anti-Hebbian rule-
Aw iy = - ot(yiyj - p2)
(if i = j or w;j > 0 then w # : = 0)

Hebbian rule-

Aq# = flYi (xj - qij)
threshold modification-

Ati = Y(Yi - P) .
Here ct, fl and T are small positive constants and p is

the specified bit probability. The Hebbian rule contains
a weight decay term in order to keep the feed-forward
weight vectors bounded. The anti-Hebbian rule is inher-
ently stable so no such normalizing term is necessary.
Note that these rules only contain terms related to the
units that the weight connect, so all the information
necessary for the modification is available locally at the
site of the connection.

In the next two sections some aspects of the model
will be demonstrated on two simple, artificially gener-
ated distributions.

8 Example 1: learning fines

Patterns consisting of random horizontal and vertical
lines were presented to the network. This example was
chosen for comparison with that given by Rumelhart
and Zipser (1985) to demonstrate competitive learning.

momon m mo
Fig. 2. A random sample of the patterns presented to the network in
Example 1

Learning lines

Input patterns:

Learned weights:

PCA solution

Reconstructions

Problems

• How to deal with graded input signals?
(i.e., real images)

• No objective function

Sparse coding model for graded signals
(Olshausen & Field, 1996)

image neural
activities
(sparse)

features other
stuff

Energy function

preserve information be sparse

-1
0

1

-1

0

1

ai

aj
Co
st

−3 −2 −1 0 1 2 3
0

5

10

15

Cost function

C(ai)

ai

C(ai) = log(1 + a
2

i)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Cost function

ai

aj

C(ai) = |ai|

!3 !2 !1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

C(ai)

ai

Compute coefficients via gradient descent

Where bi =
∑

x,y

φi(x, y) I(x, y)

Gij =
∑

x,y

φi(x, y) φj(x, y)

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Sparse cost derivative (C’)

C’(ai)

ai

Network implementation

I(x)

ai

φi(x)

−S’−Cij

Alternative formulation (the Hopfield trick)

Let

Thus

Relation between the thresholding function g and cost function C

!5 0 5
!5

0

5

g

u

a

!5 0 5
!5

0

5

u

f
!

!5 0 5
!5

0

5

C
"

!5 0 5
0

5

10

C

a

!5 0 5
!5

0

5

g

u
a

!5 0 5
!5

0

5

u

f
!

!5 0 5
!5

0

5

C
"

!5 0 5
0

2

4

C

a

!5 0 5
!5

0

5

g

u

a

!5 0 5
!5

0

5

u

f
!

!5 0 5
!5

0

5

C
"

!5 0 5
0

0.5

1

C

a

L1 L0-like

g g g g g

Coefficients may be computed simply via
thresholding and lateral inhibition

(Rozell, Johnson, Baraniuk & Olshausen, 2008)

Learning rule

Features Φi learned from natural images
(200, 12x12 pixels)

Sparsification

Image I(x,y)

Pixel values

Outputs of sparse coding network (ai)

!+
!
+

Feedforward
response (bi)

!+
!
+

Sparsified
response (ai)
!+

‘Explaining away’

Diversity of simple-cell receptive fields
in macaque V1 (Ringach 2002)

1.25x 2.5x

5x 10x

Full 10x dictionary

ridgelet

circular

curvature

grating

Examples from 10x dictionary
(Olshausen, 2013)

100x
overcomplete

learned
dictionary

(obtained by Charles
Cadieu after running

for 8 hours on16
GPU’s)

Faces
(charles
cadieu)

Sparse coding of time-varying images

. . .

t

t

ai(t)

τ
x

y

x

y

t’

φi(x,y,t−t’)

I(x,y,t)

Learned basis space-time basis functions
(200 bfs, 12 x12 x 7)

Sparse coding and reconstruction

0 1 2 3 4 5 6 7

−2

0

2

sparsified

0 1 2 3 4 5 6 7

−2

0

2

convolution

time (sec)

am
pl

itu
de

Do brains really work this way?

Evidence for sparse coding

Mushroom body, locust (Laurent)

HVC, zebra finch (Fee)

Auditory cortex, mouse (DeWeese & Zador)

Hippocampus, rat/primate (Thompson & Best; Skaggs)

Motor cortex, rabbit (Swadlow)

Barrel cortex, rat (Brecht)

Visual cortex, monkey/cat (Vinje & Gallant)

Inferotemporal cortex, human (Fried & Koch)

Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Current Opinion in Neurobiology,
14, 481-487.

Visual cortex, cat (Gray; McCormick)

Here, we avoid the question of how RA activity is translated into
sound, and simply ask how pre-motor burst patterns in RA are
generated. Previous studies have suggested that the syllable order
and tempo of the motif are generated by a network that resides
above RA, and includes HVC12,16, and that an HVC neural code for
syllables is transformed into a code for shorter acoustic elements
through the projection of HVC onto RA1,17. To re-examine these
issues, we have characterized the role of inputs to RA from pre-
motor nucleus HVC.
HVC contains at least three classes of neurons: neurons that

project to the RA, neurons that project to area X, and inter-
neurons18,19. We have identified HVC neuron classes by antidromic
activation20 from RA and from area X (Fig. 1b, c). Chronic single-
neuron recordings were made from identified neurons of all three
classes. Antidromically identified RA-projecting HVC neurons
(HVC(RA)) (n ¼ 16, three birds) were completely inactive in
awake, non-singing birds (,0.001 spikes s21), and burst extremely
sparsely during vocalizations, generating at most a single burst per
song motif (Fig. 2a). HVC(RA) bursts had a duration of 6.1 ^ 2ms,
and comprised 4.5 ^ 2 spikes at a firing rate of 613 ^ 210 s21

(ranges are^1 s.d. unless specified otherwise). HVC(RA) bursts were
highly stereotyped, tightly time-locked to the song motif
(0.66 ^ 0.14ms r.m.s. jitter), and occurred reliably on every rendi-
tion of the motif (Fig. 2b). Thus, on a millisecond timescale,
HVC(RA) bursts were maximally correlated to the vocalization.
Different HVC(RA) neurons tended to burst at different times in
the song, with no obvious timing relation to the onset or offset of
song syllables. Three identified HVC(RA) neurons generated no
bursts during the song, but produced a single burst during call
vocalizations. HVC neurons projecting to area X also burst sparsely
during singing (0–5 bursts per motif, n ¼ 30; data not shown). In
contrast to projection neurons, putative HVC interneurons
(n ¼ 31), most of which were spontaneously active in the non-
singing bird (11 ^ 7 spikes s21), produced high rates of spiking and

bursting activity throughout song and call vocalizations (Fig. 2b).
The firing patterns of putative HVC interneurons were similar to
those of unidentified neurons found in previous studies of HVC in
the singing bird1.

Previous observations have shown that sleep-related spike and
burst patterns in nucleus RA can closely recapitulate those gener-
ated during singing2, suggesting that a common neural mechanism
may underlie the generation of song- and sleep-related RA burst
patterns. A more detailed understanding of the role of HVC in
generating sleep-related activity in RA may provide a hint as to the
interaction of these two nuclei during singing. We next examined
the firing patterns of RA neurons and identified HVC neurons using
a new, sleeping-bird preparation where the head of the bird is fixed,
permitting simultaneous single-unit recordings in multiple brain
areas and pharmacological manipulation, which are not currently
possible in the singing bird.

Similar to the situation in the singing bird, HVC(RA) neurons
burst sparsely during sleep (0.06 ^ 0.05 bursts s21, n ¼ 116, 27
birds). Paired recordings in RA and HVC (Fig. 3a) neurons showed
that HVC(RA) neurons fired 13 ^ 3 times fewer bursts in the
sleeping bird than did RA neurons (n ¼ 53 pairs). The bursts had
properties similar to those observed during singing: duration of
bursts during sleep in RA and HVC(RA) neurons were 11.5 ^ 3.5ms
and 6.5 ^ 1.8ms, respectively. Bursts of HVC(RA) neurons during
sleep comprised 3.2 ^ 0.8 spikes per burst, and had an average
firing rate of 347 ^ 81 s21. The relationship between HVC(RA)

bursts and RA bursts is readily seen in raster plots of RA spike
trains aligned in time to the onset of bursts in HVC(RA) neurons
(Fig. 3b, c). RA neurons reliably showed a pattern of bursts locked to
the HVC(RA) bursts (n ¼ 45 of 53 pairs). Furthermore, multiple RA
neurons recorded sequentially with a single HVC(RA) neuron
(n ¼ 3) show that different RA neurons generate different patterns
of bursts, as is the case during singing. The relation between
HVC(RA) and RA spike trains was quantified using a correlation

Figure 2 Spiking activity of identified HVC neurons during singing. a, Extracellular record
of an RA-projecting HVC (HVC(RA)) neuron (bottom), with the simultaneously recorded

vocalization (top). The HVC(RA) neuron generates a single burst during each of three motif

renditions. b, Spike raster plot of ten HVC(RA) neurons and two HVC interneurons recorded
in one bird during singing (left) and call vocalizations (right). Each row of tick marks shows

spikes generated during one rendition of the song or call; roughly ten renditions are shown

for each neuron. Neural activity is aligned by the acoustic onset of the nearest syllable.

HVC(RA) neurons burst reliably at a single precise time in the song or call; however, HVC

interneurons spike or burst densely throughout the vocalizations.

letters to nature

NATURE |VOL 419 | 5 SEPTEMBER 2002 | www.nature.com/nature66 © 2002 Nature Publishing Group

Sparse coding in
songbird HVC

Hahnloser,
Kozhevnikov
& Fee (2002)

Open questions

• How to implement with spiking neurons?
 (See Zylberberg, Murphy & DeWeese, 2011)

• How to implement with inhibitory interneurons?
(Dale’s law - see Zhu & Rozell, 2014)

• Are neural interactions consistent with sparse coding?

• How overcomplete?

• Time

Linear	non-linear	model Sparse	coding	model Physiology

Active decorrelation

Sparse coding of natural sounds
(Smith & Lewicki 2006)

Sparse coding of natural sounds
(Smith & Lewicki 2006)

ai(t)

s(t)

Applications of sparse coding

Theory of
sparse coding
(Barlow 1972)

ai

I(x,y)

Natural scene
statistics

(Field 1990’s)

Compressed sensing

Signal/image
restoration

Computer vision

Deep learning

Neural data
analysis

Deep learning

Neural data
analysis

primarily the place cell population whose mem-
brane potential fluctuations give rise to theLFP (10).

Rats were implanted with 32-, 64-, or 256-site
silicon probes in the hippocampus to monitor
both LFP and unit firing (Fig. 1A) while they
traversed a linear track (Fig. 1B), open field, or a
Tmaze (11).Whenmapped onto electrode space,
the theta rhythm showed spatiotemporal variations
(Fig. 1A) that changed gradually over multiple
cycles (movie S1). By analogy to radio commu-
nication, we defined the theta oscillation to be a
carrier wave whose modulation contains informa-
tion. This informationwas extracted from the theta
rhythm using a demodulation operation (fig. S1).

First, the theta-band-filtered oscillatory activity
of each electrode was converted to a complex-
valued signal, representing its instantaneous
phase and amplitude (Fig. 1D). The carrier
signal, identified by principal component analy-
sis, was highly coherent across electrodes (Fig.
1D, lower trace). The demodulation operation
then removed the phase of the theta carrier from
each electrode, resulting in a spatiotemporal pat-
tern of relative phase and amplitude that covaried
smoothly (Fig. 1, E and F) with the rat’s position.

The position of the rat during navigation was
estimated from the demodulated LFP (Fig. 2 and
fig. S2) and compared to spike-based decoding
(1, 7, 12, 13). Although the cross-validated ac-
curacy of the two decoders was comparable [op-
timal linear estimator (OLE) median error 6.7 T
0.2 cm (LFP) and 9.2 T 0.2 cm (spiking)] (Fig. 2G
and fig. S2), they had distinct velocity and position
dependence (Fig. 2, B and D). Accurate decoding
of the theta rhythm depended on demodulation, as
well as preserving the high dimensionality of the
signal, even though the variance of the multi-
electrode signal was largely concentrated in a low-
dimensional subspace (Fig. 2C), visible in the
strong correlations in the LFP recorded at differ-

ent electrodes (Fig. 1, C and D). Whitening and
Bayesian decoding methods further improved ac-
curacy, especially in the open field (120 by 120
or 180 by 180 cm2) (Fig. 2G).

Because position encoding is sparse, a theo-
retical result (14) based on compressed sensing
(15) suggests that unsupervised learning can dis-
cover position-dependent sparse structure in the
LFP without explicit knowledge of the rat’s po-
sition.We tested this prediction by examining the
evolving spatiotemporal distribution of the theta-
filtered LFP using independent component anal-
ysis (ICA) (16, 17). A subset of the components
[termed feature-tuned field potentials (FFPs)]
showed selective activation at specific positions
along one direction of motion (Fig. 3A and figs.
S3 and S4) and comprised the major portion of
the signal variance (53%, 69%, and 79% of total
variance for n = 3 rats). When FFPs were pro-
jected back onto the anatomical space, they were
distributed across the entire surface of the elec-
trode array (Fig. 3B and movie S2).

We next asked whether the sparse structure of
the broadband LFP (4 to 80 Hz) is also position
dependent by training a convolutional sparse
coding algorithm (18), which models signals as

1Redwood Center for Theoretical Neuroscience, University of
California, Berkeley, Berkeley, CA 94720, USA. 2The Neuroscience
Institute, Center for Neural Science, NewYorkUniversity, School of
Medicine, New York, NY 10016, USA. 3Magyar Tudományos
Akadémia-Szegedi Tudományegyetem (MTA-SZTE) Momentum
Oscillatory Neuronal Networks Research Group, University of
Szeged, Department of Physiology, Szeged, H-6720, Hungary.

*Present address: University of Connecticut, Department of Psy-
chology, Storrs, CT 06269, USA.
†Present address: Allen Institute for Brain Science, Seattle, WA
98103, USA.
††Corresponding author. E-mail: fsommer@berkeley.edu (F.T.S.);
gyorgy.buzsaki@nyumc.org (G.B.)

Fig. 1. Recording space- and
time-dependent variations in
theta rhythm. (Ai) Arrange-
ment of 64 (yellow) and 2 by
256 (red) electrode arrays im-
planted in the hippocampi of
different rats. Left and right pan-
els depict recordings along or-
thogonal axes: D/V, dorsoventral;
A/P, anteroposterior; M/L, me-
diolateral. (Aii) Average spa-
tial distribution of theta recorded
by the electrode array in the
right panel of (Ai) reveals sys-
tematic differences in the ana-
tomical distribution of the theta
rhythm. Arrows depict local
phase gradients. (B) A rat runs
across a 250-cm track to receive
a water reward (w) at both ends.
(C to E) (Left) LFP recorded
during one run across the track.
(Right) schematic of signal rep-
resentation. Axes: T, time; R,
real; I, imaginary. (C) Velocity
of the rat (top) and the orig-
inal, broadband signal (bot-
tom), which shows a strong
theta rhythm during running.
(D) (Top) Filtering the signal
with Morlet wavelet (5 to 11 Hz
half-power cutoff) results in a
complex-valued waveform with
time-varying amplitude and
phase. (Bottom) The first prin-
cipal component (PC1) of the
complex-valued signal, which tracks the global theta oscillation. (E) De-
modulating the signal using PC1 as a carrier identifies modulations in
amplitude and phase. (F) Averaging the demodulated signal over multiple

runs reveals that its variations depend systematically on the rat’s position.
For (E) and (F), phase is scaled by a factor of 16 to emphasize time-varying
structure.

www.sciencemag.org SCIENCE VOL 344 9 MAY 2014 627

REPORTS

on January 28, 2018

http://science.sciencem
ag.org/

D
ow

nloaded from

Sparse coding of demodulated LFP reveals
‘place cell’ components

(Agarwal, Stevenson, Berényi, Mizuseki, Buzsáki & Sommer, 2014)

sparse
coding

Building high-level features using large-scale unsupervised learning

the cortex. They also demonstrate that convolutional
DBNs (Lee et al., 2009), trained on aligned images of
faces, can learn a face detector. This result is inter-
esting, but unfortunately requires a certain degree of
supervision during dataset construction: their training
images (i.e., Caltech 101 images) are aligned, homoge-
neous and belong to one selected category.

Figure 1. The architecture and parameters in one layer of
our network. The overall network replicates this structure
three times. For simplicity, the images are in 1D.

3.2. Architecture

Our algorithm is built upon these ideas and can be
viewed as a sparse deep autoencoder with three impor-
tant ingredients: local receptive fields, pooling and lo-
cal contrast normalization. First, to scale the autoen-
coder to large images, we use a simple idea known as
local receptive fields (LeCun et al., 1998; Raina et al.,
2009; Lee et al., 2009; Le et al., 2010). This biologi-
cally inspired idea proposes that each feature in the
autoencoder can connect only to a small region of the
lower layer. Next, to achieve invariance to local defor-
mations, we employ local L2 pooling (Hyvärinen et al.,
2009; Gregor & LeCun, 2010; Le et al., 2010) and lo-
cal contrast normalization (Jarrett et al., 2009). L2
pooling, in particular, allows the learning of invariant
features (Hyvärinen et al., 2009; Le et al., 2010).

Our deep autoencoder is constructed by replicating
three times the same stage composed of local filtering,
local pooling and local contrast normalization. The
output of one stage is the input to the next one and
the overall model can be interpreted as a nine-layered
network (see Figure 1).

The first and second sublayers are often known as fil-
tering (or simple) and pooling (or complex) respec-
tively. The third sublayer performs local subtractive
and divisive normalization and it is inspired by bio-

logical and computational models (Pinto et al., 2008;
Lyu & Simoncelli, 2008; Jarrett et al., 2009).2

As mentioned above, central to our approach is the use
of local connectivity between neurons. In our experi-
ments, the first sublayer has receptive fields of 18x18
pixels and the second sub-layer pools over 5x5 over-
lapping neighborhoods of features (i.e., pooling size).
The neurons in the first sublayer connect to pixels in all
input channels (or maps) whereas the neurons in the
second sublayer connect to pixels of only one channel
(or map).3 While the first sublayer outputs linear filter
responses, the pooling layer outputs the square root of
the sum of the squares of its inputs, and therefore, it
is known as L2 pooling.

Our style of stacking a series of uniform mod-
ules, switching between selectivity and toler-
ance layers, is reminiscent of Neocognition and
HMAX (Fukushima & Miyake, 1982; LeCun et al.,
1998; Riesenhuber & Poggio, 1999). It has also
been argued to be an architecture employed by the
brain (DiCarlo et al., 2012).

Although we use local receptive fields, they are
not convolutional: the parameters are not shared
across different locations in the image. This is
a stark difference between our approach and pre-
vious work (LeCun et al., 1998; Jarrett et al., 2009;
Lee et al., 2009). In addition to being more biolog-
ically plausible, unshared weights allow the learning
of more invariances other than translational invari-
ances (Le et al., 2010).

In terms of scale, our network is perhaps one of the
largest known networks to date. It has 1 billion train-
able parameters, which is more than an order of magni-
tude larger than other large networks reported in liter-
ature, e.g., (Ciresan et al., 2010; Sermanet & LeCun,
2011) with around 10 million parameters. It is
worth noting that our network is still tiny com-
pared to the human visual cortex, which is 106

times larger in terms of the number of neurons and
synapses (Pakkenberg et al., 2003).

3.3. Learning and Optimization

Learning: During learning, the parameters of the
second sublayers (H) are fixed to uniform weights,

2The subtractive normalization removes the
weighted average of neighboring neurons from the
current neuron gi,j,k = hi,j,k −

∑

iuv Guvhi,j+u,i+v

The divisive normalization computes yi,j,k =
gi,j,k/max{c, (

∑

iuv Guvg
2
i,j+u,i+v)

0.5}, where c is set
to be a small number, 0.01, to prevent numerical errors.
G is a Gaussian weighting window. (Jarrett et al., 2009)

3For more details regarding connectivity patterns and
parameter sensitivity, see Appendix B and E.

sparse coding

pooling

normalization

‘Google Brain’
(Quoc Le et al. 2012)

Building high-level features using large-scale unsupervised learning

the cortex. They also demonstrate that convolutional
DBNs (Lee et al., 2009), trained on aligned images of
faces, can learn a face detector. This result is inter-
esting, but unfortunately requires a certain degree of
supervision during dataset construction: their training
images (i.e., Caltech 101 images) are aligned, homoge-
neous and belong to one selected category.

Figure 1. The architecture and parameters in one layer of
our network. The overall network replicates this structure
three times. For simplicity, the images are in 1D.

3.2. Architecture

Our algorithm is built upon these ideas and can be
viewed as a sparse deep autoencoder with three impor-
tant ingredients: local receptive fields, pooling and lo-
cal contrast normalization. First, to scale the autoen-
coder to large images, we use a simple idea known as
local receptive fields (LeCun et al., 1998; Raina et al.,
2009; Lee et al., 2009; Le et al., 2010). This biologi-
cally inspired idea proposes that each feature in the
autoencoder can connect only to a small region of the
lower layer. Next, to achieve invariance to local defor-
mations, we employ local L2 pooling (Hyvärinen et al.,
2009; Gregor & LeCun, 2010; Le et al., 2010) and lo-
cal contrast normalization (Jarrett et al., 2009). L2
pooling, in particular, allows the learning of invariant
features (Hyvärinen et al., 2009; Le et al., 2010).

Our deep autoencoder is constructed by replicating
three times the same stage composed of local filtering,
local pooling and local contrast normalization. The
output of one stage is the input to the next one and
the overall model can be interpreted as a nine-layered
network (see Figure 1).

The first and second sublayers are often known as fil-
tering (or simple) and pooling (or complex) respec-
tively. The third sublayer performs local subtractive
and divisive normalization and it is inspired by bio-

logical and computational models (Pinto et al., 2008;
Lyu & Simoncelli, 2008; Jarrett et al., 2009).2

As mentioned above, central to our approach is the use
of local connectivity between neurons. In our experi-
ments, the first sublayer has receptive fields of 18x18
pixels and the second sub-layer pools over 5x5 over-
lapping neighborhoods of features (i.e., pooling size).
The neurons in the first sublayer connect to pixels in all
input channels (or maps) whereas the neurons in the
second sublayer connect to pixels of only one channel
(or map).3 While the first sublayer outputs linear filter
responses, the pooling layer outputs the square root of
the sum of the squares of its inputs, and therefore, it
is known as L2 pooling.

Our style of stacking a series of uniform mod-
ules, switching between selectivity and toler-
ance layers, is reminiscent of Neocognition and
HMAX (Fukushima & Miyake, 1982; LeCun et al.,
1998; Riesenhuber & Poggio, 1999). It has also
been argued to be an architecture employed by the
brain (DiCarlo et al., 2012).

Although we use local receptive fields, they are
not convolutional: the parameters are not shared
across different locations in the image. This is
a stark difference between our approach and pre-
vious work (LeCun et al., 1998; Jarrett et al., 2009;
Lee et al., 2009). In addition to being more biolog-
ically plausible, unshared weights allow the learning
of more invariances other than translational invari-
ances (Le et al., 2010).

In terms of scale, our network is perhaps one of the
largest known networks to date. It has 1 billion train-
able parameters, which is more than an order of magni-
tude larger than other large networks reported in liter-
ature, e.g., (Ciresan et al., 2010; Sermanet & LeCun,
2011) with around 10 million parameters. It is
worth noting that our network is still tiny com-
pared to the human visual cortex, which is 106

times larger in terms of the number of neurons and
synapses (Pakkenberg et al., 2003).

3.3. Learning and Optimization

Learning: During learning, the parameters of the
second sublayers (H) are fixed to uniform weights,

2The subtractive normalization removes the
weighted average of neighboring neurons from the
current neuron gi,j,k = hi,j,k −

∑

iuv Guvhi,j+u,i+v

The divisive normalization computes yi,j,k =
gi,j,k/max{c, (

∑

iuv Guvg
2
i,j+u,i+v)

0.5}, where c is set
to be a small number, 0.01, to prevent numerical errors.
G is a Gaussian weighting window. (Jarrett et al., 2009)

3For more details regarding connectivity patterns and
parameter sensitivity, see Appendix B and E.

Building high-level features using large-scale unsupervised learning

and minimum activation values, then picked 20 equally
spaced thresholds in between. The reported accuracy
is the best classification accuracy among 20 thresholds.

4.3. Recognition

Surprisingly, the best neuron in the network performs
very well in recognizing faces, despite the fact that no
supervisory signals were given during training. The
best neuron in the network achieves 81.7% accuracy in
detecting faces. There are 13,026 faces in the test set,
so guessing all negative only achieves 64.8%. The best
neuron in a one-layered network only achieves 71% ac-
curacy while best linear filter, selected among 100,000
filters sampled randomly from the training set, only
achieves 74%.

To understand their contribution, we removed the lo-
cal contrast normalization sublayers and trained the
network again. Results show that the accuracy of
best neuron drops to 78.5%. This agrees with pre-
vious study showing the importance of local contrast
normalization (Jarrett et al., 2009).

We visualize histograms of activation values for face
images and random images in Figure 2. It can be seen,
even with exclusively unlabeled data, the neuron learns
to differentiate between faces and random distractors.
Specifically, when we give a face as an input image, the
neuron tends to output value larger than the threshold,
0. In contrast, if we give a random image as an input
image, the neuron tends to output value less than 0.

Figure 2. Histograms of faces (red) vs. no faces (blue).
The test set is subsampled such that the ratio between
faces and no faces is one.

4.4. Visualization

In this section, we will present two visualization tech-
niques to verify if the optimal stimulus of the neuron is
indeed a face. The first method is visualizing the most
responsive stimuli in the test set. Since the test set
is large, this method can reliably detect near optimal
stimuli of the tested neuron. The second approach
is to perform numerical optimization to find the op-
timal stimulus (Berkes & Wiskott, 2005; Erhan et al.,
2009; Le et al., 2010). In particular, we find the norm-
bounded input x which maximizes the output f of the

tested neuron, by solving:

x∗ = argmin
x

f(x;W,H), subject to ||x||2 = 1.

Here, f(x;W,H) is the output of the tested neuron
given learned parameters W,H and input x. In our
experiments, this constraint optimization problem is
solved by projected gradient descent with line search.

These visualization methods have complementary
strengths and weaknesses. For instance, visualizing
the most responsive stimuli may suffer from fitting to
noise. On the other hand, the numerical optimization
approach can be susceptible to local minima. Results,
shown in Figure 3, confirm that the tested neuron in-
deed learns the concept of faces.

Figure 3. Top: Top 48 stimuli of the best neuron from the
test set. Bottom: The optimal stimulus according to nu-
merical constraint optimization.

4.5. Invariance properties

We would like to assess the robustness of the face de-
tector against common object transformations, e.g.,
translation, scaling and out-of-plane rotation. First,
we chose a set of 10 face images and perform distor-
tions to them, e.g., scaling and translating. For out-
of-plane rotation, we used 10 images of faces rotating
in 3D (“out-of-plane”) as the test set. To check the ro-
bustness of the neuron, we plot its averaged response
over the small test set with respect to changes in scale,
3D rotation (Figure 4), and translation (Figure 5).6

6Scaled, translated faces are generated by standard
cubic interpolation. For 3D rotated faces, we used 10 se-

‘Google Brain’
(Quoc Le et al. 2012)

‘Topographic ICA’
(Hyvärinen & Hoyer 2001)

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Sparse-Manifold Transform

LLL still has a difficulty in that a neighboring interpolation
is needed and it is not clear how to use a KNN solver ef-
ficiently when the underlying signal is k-sparse. We posit
that temporal information provides a solution.

A general idea of imposing a ’slowness prior’ was initially
proposed by (Földiák, 1991) and (Wiskott & Sejnowski,
2002). While a common practice in both sparse coding and
manifold learning is that the data is collected in an order-
less fashion, (van Hateren & Ruderman, 1998; Olshausen,
2003; Lee et al., 2003; Hyvärinen et al., 2003; Cadieu &
Olshausen, 2012) demonstrated temporal information can
be used to build better signal representations. Here the tem-
poral information can be used to efficiently solve equation
(3) in the embedding space, which leads to equation (5).
This linearity is a variation to ’slowness’, which makes the
connection to manifold learning more explicit.

The seminal works in deformable filter theory (Freeman
et al., 1991; Simoncelli et al., 1992; Simoncelli & Freeman,
1995; Perona, 1995) demonstrate how to use a parsimo-
nious dictionary to ’steer’ a kernel by linearly combining
the elements in the dictionary. In this paper, rather than
using a parsimonious dictionary, we choose to use 10-20
times overcomplete positive-only sparse coding since we
empirically find that at such an overcompleteness, most
dictionary elements can approximately be interpolated by
similar-shape neighboring elements with a L1 norm close
to 1. This choice makes the geometry of the dictionary
closer to a low-dimensional manifold. A thorough analysis
is beyond the scope of this paper.

In the following sections ...

2. Sparse-Manifold Transform Formulation
We assume the dictionary learned by sparse coding has an
ordering that it’s topologically equivalent to a low dimen-
sional smooth manifold. (see fig 2) The underlying signal
is a k-sparse function defined on the manifold. Since there
are only finitely many learned dictionary elements, they
are a landmark sampling of the underlying manifold. ↵ is
a discrete approximation of the true k-sparse function de-
fined on the landmarks. There exists a geometric mapping
M : � ! P , s.t. each of the dictionary elements is geomet-
rically mapped to a new vector, M(�i) = Pi. 1 We further
assume the continuous temporal transformation leads to a
linear flow on a manifold the manifold and it also leads to a
linear flow in the geometrical embedding space. The linear
flow can be formulated as follows:

1Here P is a general geometrical embedding, which has a higher
dimensionality than the dictionary manifold. This is different from
the conventional concept that P is the manifold embedding itself.
In section 3 we introduce a functional embedding concept.

P↵t ⇡
1

2
P↵t�1 +

1

2
P↵t+1 (5)

Figure 2. This is the figure caption where we explain the figure and
concepts related to the figure and maybe we reference some text
or something

where the index t represents time, this is equivalent to that
the second order temporal derivative of P↵ is approximately
zero. We can find the embedding matrix P by solving the
following optimization:

min
P

kPADk2F , s.t. PV PT = I. (6)

where V is a positive-definite matrix for normalization pur-
pose. We choose V to be the covariance matrix of ↵. 2 Each
column of A is the sparse coefficient vector at a particular
time step, or At = ↵t. D is the second-order differential
matrix such that:

D =

2

66666664

1 � 1
2 0 0 . . . 0

� 1
2 1 � 1

2 0 . . . 0
0 � 1

2 1 � 1
2 . . . 0

0 0 � 1
2 1 . . . 0

...
...

...
...

. . .
...

0 . . . 0 0 � 1
2 1

3

77777775

(7)

The solution to this generalized eigen-decomposition prob-
lem is given (Vladymyrov & Carreira-Perpinán, 2013) by
P = V � 1

2U , where U is a matrix of d trailing eigenvectors
of the matrix V � 1

2ADDTATV � 1
2 . Two major drawbacks

of this analytic solution are: 1) The embedding dimensions
are ordered, we prefer to make the information more dis-
tributed. 2)One more manifold constraints are introduced,

2This formulation is qualitatively similar to applying slow fea-
ture analysis to sparse coefficients, though the second order deriva-
tive is used rather than the first order derivative.

Sparse Manifold Transform
(Yubei Chen, Ph.D. thesis)

Pat ⇡
1

2
Pat�1 +

1

2
Pat+1

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Sparse-Manifold Transform

LLL still has a difficulty in that a neighboring interpolation
is needed and it is not clear how to use a KNN solver ef-
ficiently when the underlying signal is k-sparse. We posit
that temporal information provides a solution.

A general idea of imposing a ’slowness prior’ was initially
proposed by (Földiák, 1991) and (Wiskott & Sejnowski,
2002). While a common practice in both sparse coding and
manifold learning is that the data is collected in an order-
less fashion, (van Hateren & Ruderman, 1998; Olshausen,
2003; Lee et al., 2003; Hyvärinen et al., 2003; Cadieu &
Olshausen, 2012) demonstrated temporal information can
be used to build better signal representations. Here the tem-
poral information can be used to efficiently solve equation
(3) in the embedding space, which leads to equation (5).
This linearity is a variation to ’slowness’, which makes the
connection to manifold learning more explicit.

The seminal works in deformable filter theory (Freeman
et al., 1991; Simoncelli et al., 1992; Simoncelli & Freeman,
1995; Perona, 1995) demonstrate how to use a parsimo-
nious dictionary to ’steer’ a kernel by linearly combining
the elements in the dictionary. In this paper, rather than
using a parsimonious dictionary, we choose to use 10-20
times overcomplete positive-only sparse coding since we
empirically find that at such an overcompleteness, most
dictionary elements can approximately be interpolated by
similar-shape neighboring elements with a L1 norm close
to 1. This choice makes the geometry of the dictionary
closer to a low-dimensional manifold. A thorough analysis
is beyond the scope of this paper.

In the following sections ...

2. Sparse-Manifold Transform Formulation
We assume the dictionary learned by sparse coding has an
ordering that it’s topologically equivalent to a low dimen-
sional smooth manifold. (see fig 2) The underlying signal
is a k-sparse function defined on the manifold. Since there
are only finitely many learned dictionary elements, they
are a landmark sampling of the underlying manifold. ↵ is
a discrete approximation of the true k-sparse function de-
fined on the landmarks. There exists a geometric mapping
M : � ! P , s.t. each of the dictionary elements is geomet-
rically mapped to a new vector, M(�i) = Pi. 1 We further
assume the continuous temporal transformation leads to a
linear flow on a manifold the manifold and it also leads to a
linear flow in the geometrical embedding space. The linear
flow can be formulated as follows:

1Here P is a general geometrical embedding, which has a higher
dimensionality than the dictionary manifold. This is different from
the conventional concept that P is the manifold embedding itself.
In section 3 we introduce a functional embedding concept.

P↵t ⇡
1

2
P↵t�1 +

1

2
P↵t+1 (5)

Figure 2. This is the figure caption where we explain the figure and
concepts related to the figure and maybe we reference some text
or something

where the index t represents time, this is equivalent to that
the second order temporal derivative of P↵ is approximately
zero. We can find the embedding matrix P by solving the
following optimization:

min
P

kPADk2F , s.t. PV PT = I. (6)

where V is a positive-definite matrix for normalization pur-
pose. We choose V to be the covariance matrix of ↵. 2 Each
column of A is the sparse coefficient vector at a particular
time step, or At = ↵t. D is the second-order differential
matrix such that:

D =

2

66666664

1 � 1
2 0 0 . . . 0

� 1
2 1 � 1

2 0 . . . 0
0 � 1

2 1 � 1
2 . . . 0

0 0 � 1
2 1 . . . 0

...
...

...
...

. . .
...

0 . . . 0 0 � 1
2 1

3

77777775

(7)

The solution to this generalized eigen-decomposition prob-
lem is given (Vladymyrov & Carreira-Perpinán, 2013) by
P = V � 1

2U , where U is a matrix of d trailing eigenvectors
of the matrix V � 1

2ADDTATV � 1
2 . Two major drawbacks

of this analytic solution are: 1) The embedding dimensions
are ordered, we prefer to make the information more dis-
tributed. 2)One more manifold constraints are introduced,

2This formulation is qualitatively similar to applying slow fea-
ture analysis to sparse coefficients, though the second order deriva-
tive is used rather than the first order derivative.

min
P

||PAD||2F � �1||PA||2F + �2||PV ||1

PV PT =
1

K
I

V = diag(ā)

Learning to represent the function on the manifold

We desire:

Objective function:

s.t.

sparse
coefficients

ai(t)

pooling
function
output

original reconstr. ai(t) reconstr. pooling

