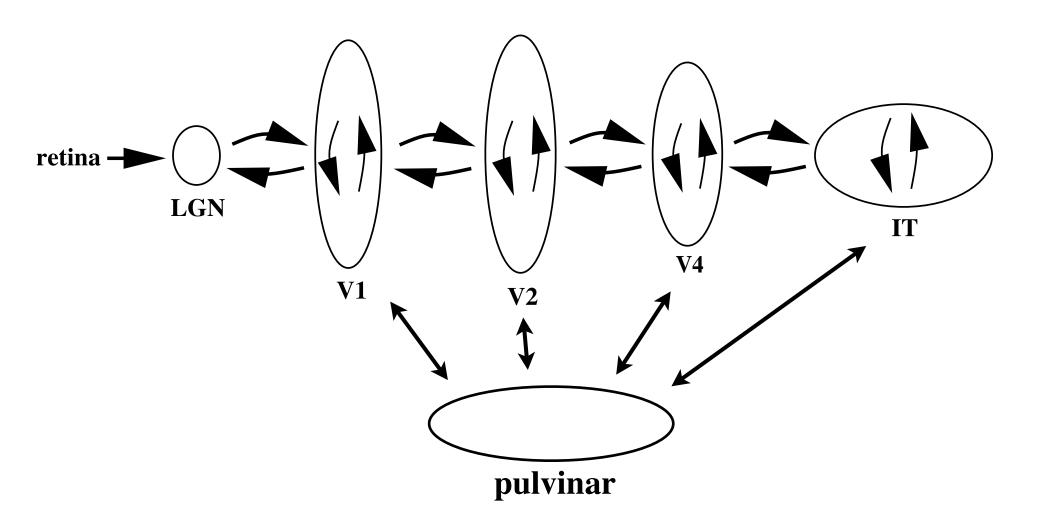
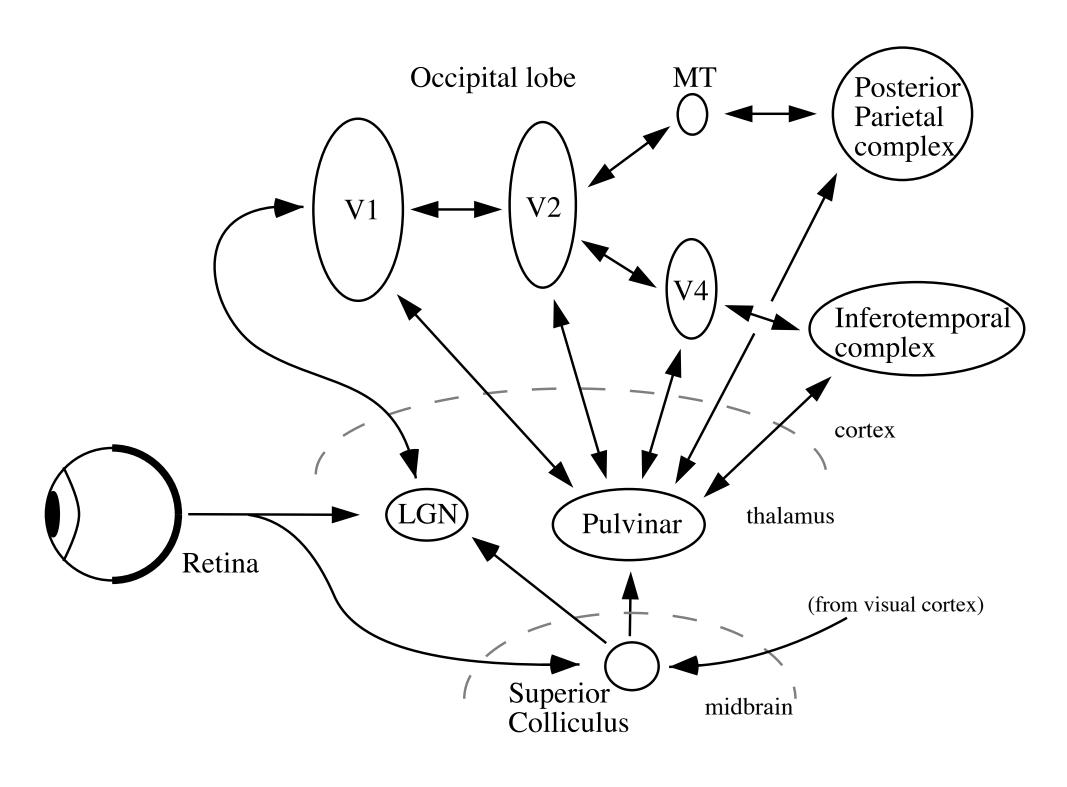
Vision as inference

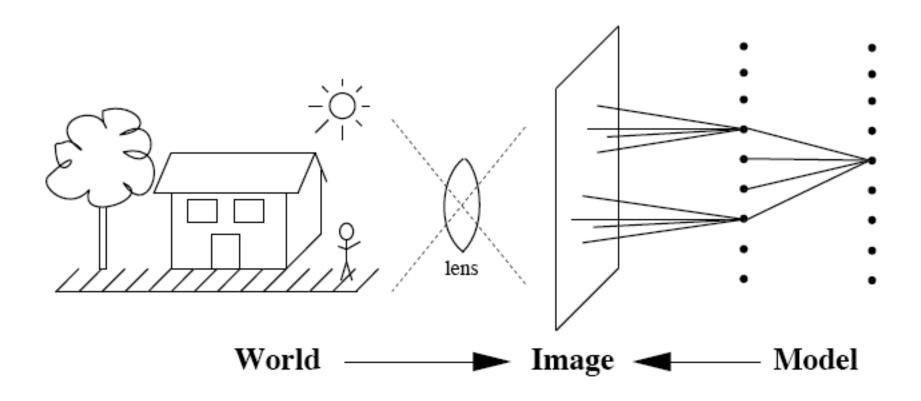
- Generative models and Bayesian inference
- Sparse, overcomplete representations a model for V1?
- Hierarchical models for capturing dependencies among sparse components
- Bilinear models and invariance (slow feature analysis)

Recurrent computation is pervasive throughout cortex





Vision as inference



Bayes' rule

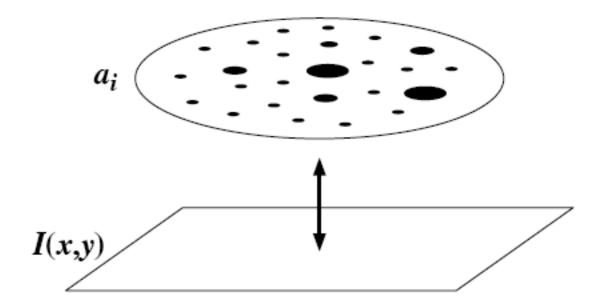
$$P(E|D) \propto \underbrace{P(D|E)}_{\text{how data is}} \times \underbrace{P(E)}_{\text{prior beliefs}}$$
 generated by
 about the
 the environment

E = the actual state of the environment

D = data about the environment

Sparse component analysis

Olshausen & Field (1996), Bell & Sejnowski (1997)



Evidence for sparse coding

- Gilles Laurent mushroom body, insect
- Michael Fee HVC, zebra finch
- Tony Zador auditory cortex, mouse
- Bill Skaggs hippocampus, primate
- Harvey Swadlow motor cortex, rabbit
- Michael Brecht barrel cortex, rat
- Jack Gallant visual cortex, macaque monkey
- Christof Koch/Itzhak Fried inferotemportal cortex, human

See:

Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14, 481-487.

Overcomplete representations

- In oriented, multiscale pyramids, overcompleteness is necessary to ascribe meaning to coefficients (Simoncelli, Freeman, Adelson, and Heeger, 1992).
- Overcomplete time-frequency dictionaries are best able to reveal timefrequency structure embedded in signals (Chen, Donoho, Saunders, 2001).
- Area V1 is highly overcomplete, by approximately 25:1 (in cat).

Shiftable Multiscale Transforms

Eero P. Simoncelli, William T. Freeman, Edward H. Adelson, and David J. Heeger

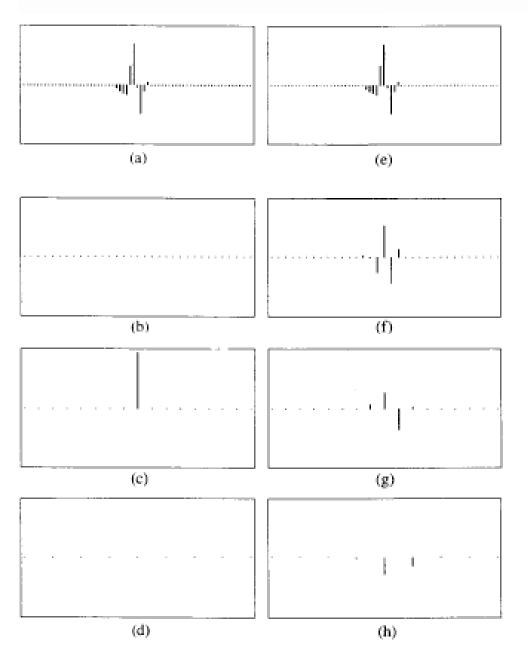


Fig. 1. Effect of translation on the wavelet representation of a signal. (a) Input signal, which is equal to one of the wavelet basis functions. (b)-(d) Decomposition of the signal into three wavelet subbands. Plotted are the coefficients of each subband. Dots correspond to zero-value coefficients. (e) Same input signal, translated one sample to to the right. (f)-(h) Decomposition of the shifted signal into three wavelet subbands. Note the drastic change in the coefficients of the transform, both within and between subbands.

S. S. CHEN, D. L. DONOHO, AND M. A. SAUNDERS

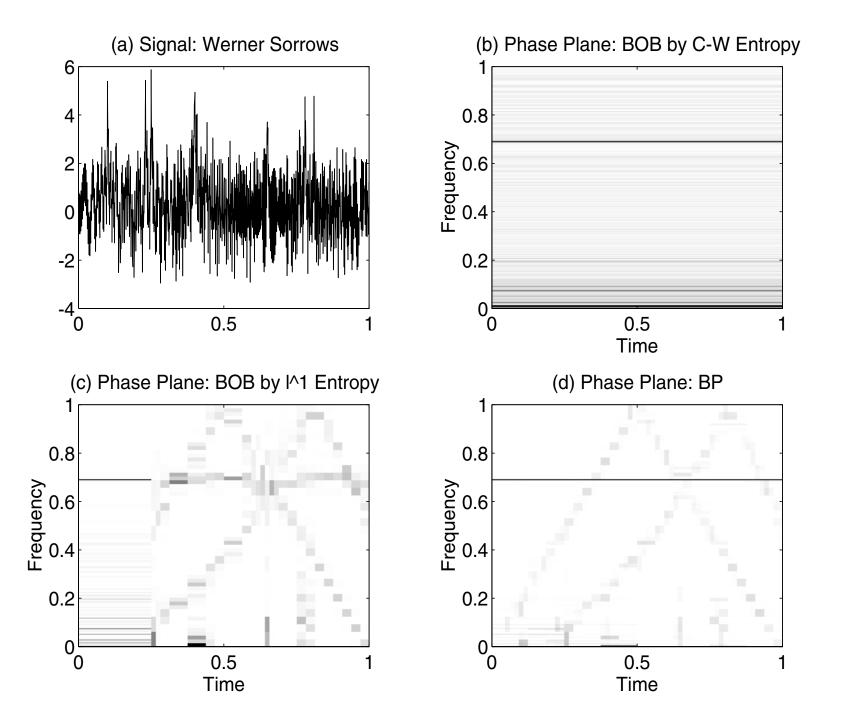


Image model

$$I(x,y) = \sum_{i} a_i \phi_i(x,y) + \nu(x,y) .$$

Goal: Find a set of basis functions $\{\phi_i\}$ for representing natural images such that the coefficients a_i are as sparse and statistically independent as possible.

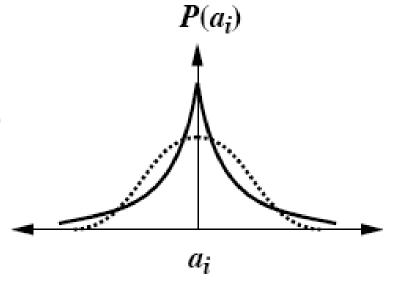
Prior

• Factorial:

$$P(\mathbf{a}|\theta) = \prod_{i} P(a_i|\theta)$$

• Sparse:

$$P(a_i|\theta) = \frac{1}{Z_S} e^{-S(a_i)}$$



Inference (perception)

MAP estimate:

$$\hat{\mathbf{a}} = \arg\max_{\mathbf{a}} P(\mathbf{a}|\mathbf{I}, \theta)$$

$$P(\mathbf{a}|\mathbf{I},\theta) \propto P(\mathbf{I}|\mathbf{a},\theta) P(\mathbf{a}|\theta)$$

Energy function:

$$\begin{split} E(\mathbf{I}, \mathbf{a}) &= -\log P(\mathbf{a} | \mathbf{I}, \theta) \\ &= \frac{\lambda_N}{2} |\mathbf{I} - \Phi \mathbf{a}|^2 + \sum_i S(a_i) + \text{const.} \end{split}$$

Dynamics:

$$\dot{\mathbf{a}} \propto -\frac{\partial E}{\partial \mathbf{a}}$$

$$= \lambda_N \Phi^T \mathbf{I} - \lambda_N \Phi^T \Phi \mathbf{a} - S'(\mathbf{a})$$

Learning

Objective function:

$$\mathcal{L} = \langle \log P(\mathbf{I}|\theta) \rangle$$

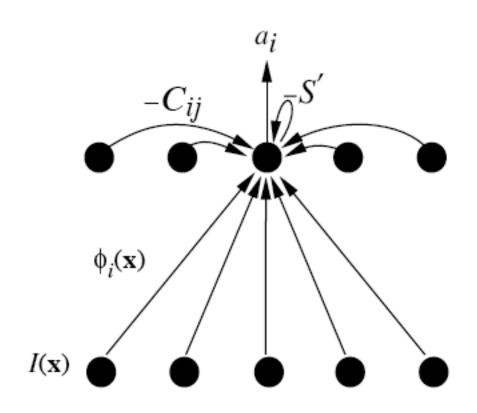
$$P(\mathbf{I}|\theta) = \int P(\mathbf{I}|\mathbf{a}, \theta) P(\mathbf{a}|\theta) d\mathbf{a}$$

Learning rule:

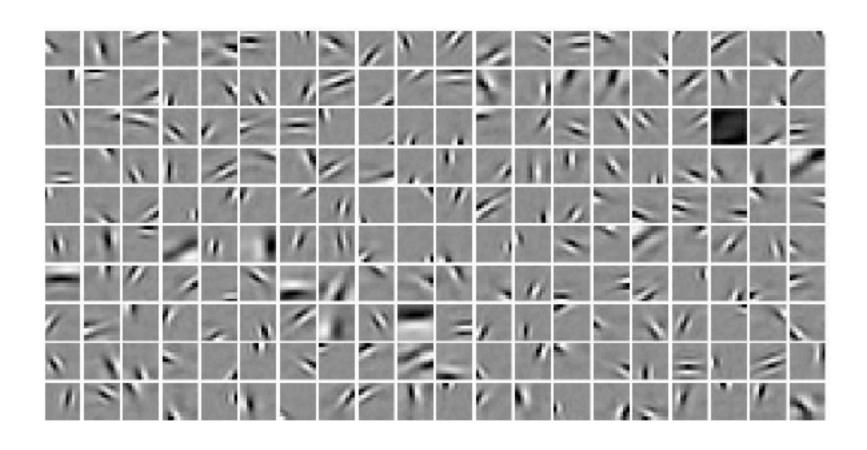
$$\Delta \Phi \propto \frac{\partial \mathcal{L}}{\partial \Phi}$$

$$= \lambda_N \int [I - \Phi \mathbf{a}] P(\mathbf{a}|\mathbf{I}, \theta) d\mathbf{a}$$

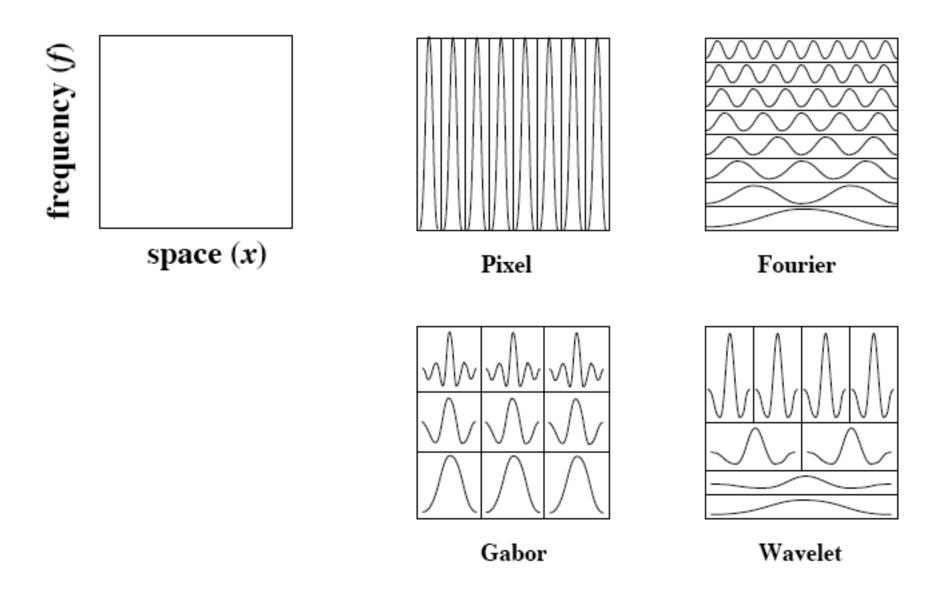
Network implementation



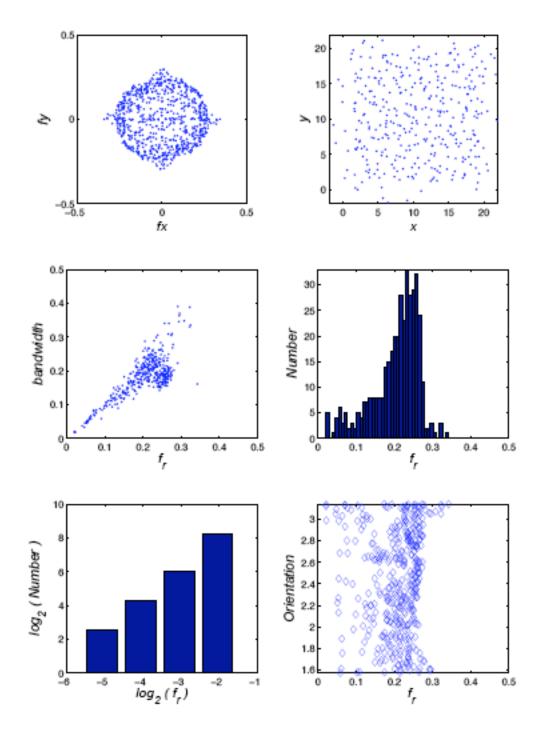
Learned basis functions (200, 12x12)



Scale space (or "phase space")

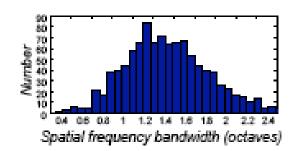


Tiling properties



Spatial-frequency bandwidth

Model:



Physiology (DeValois lab):

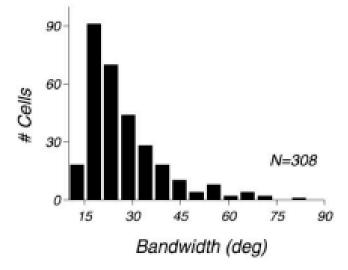
Spatial Frequency Bandwidth (octaves)

Orientation bandwidth

Model:

0 10 20 30 40 50 60 70 80 90 Orientation bandwidth (degrees)

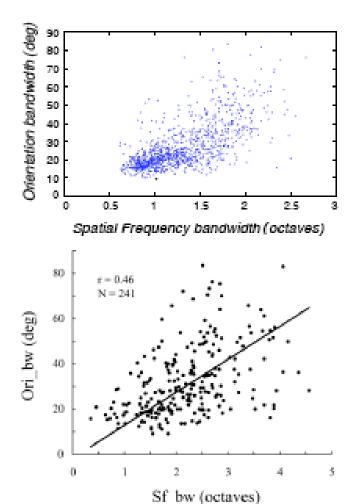
Physiology (Shapley lab):



Orientation bandwidth vs. spatial-frequency bandwidth

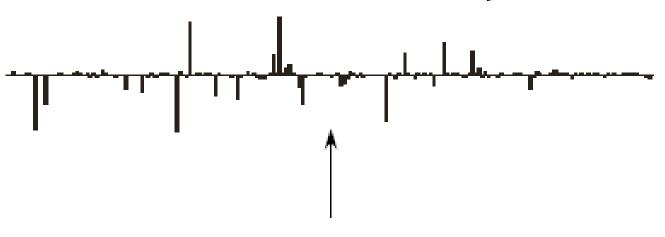
Model:

Physiology (Shapley lab):



Sparsification

Outputs of sparse coding network (ai)

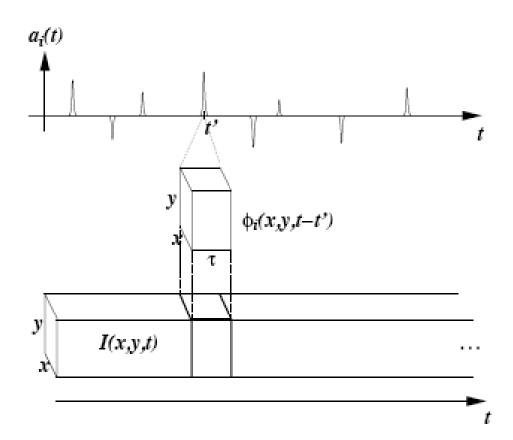


Pixel values

Image I(x,y)

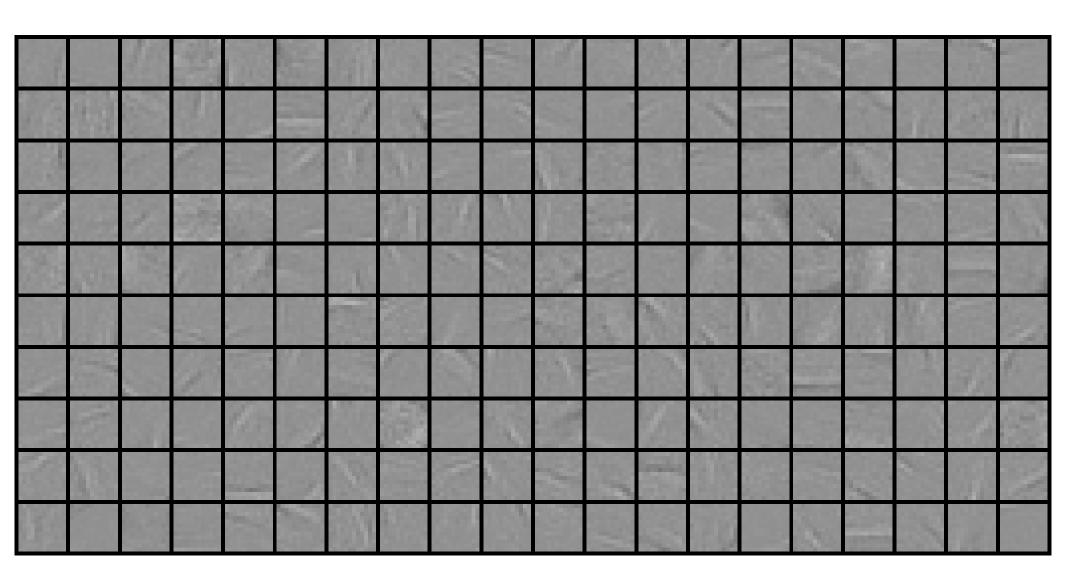
Space-time image model

$$I(x, y, t) = \sum_{i} a_i(t) * \phi_i(x, y, t) + \nu(x, y, t)$$



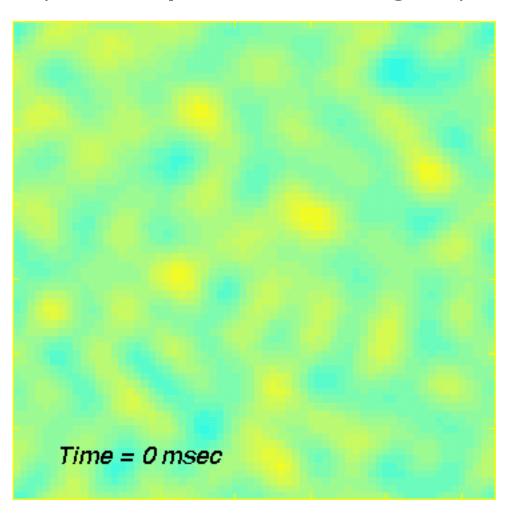
Goal: Find a set of spacetime basis functions $\{\phi_i\}$ for representing natural images such that the *time-varying* coefficients $a_i(t)$ are as sparse and statistically independent as possible over both space and time.

Learned basis space-time basis functions (200 bfs, 12 x 12 x 7)



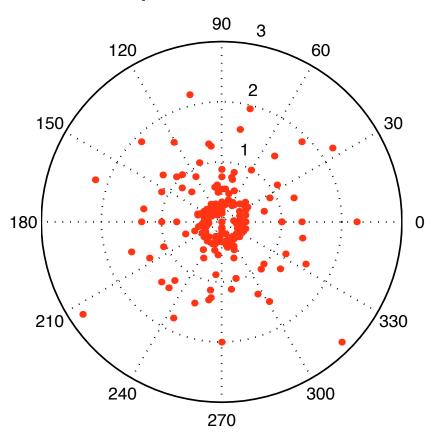
VI space-time receptive field

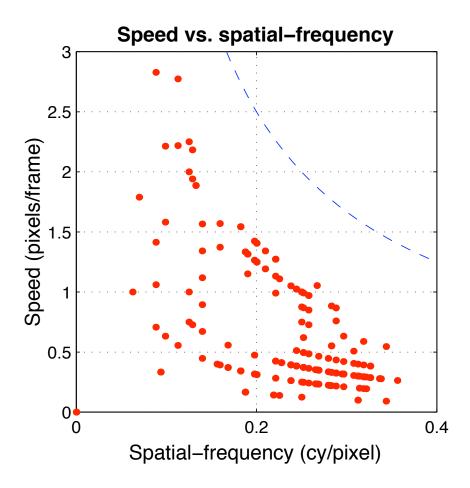
(courtesy of Dario Ringach)



Tiling properties

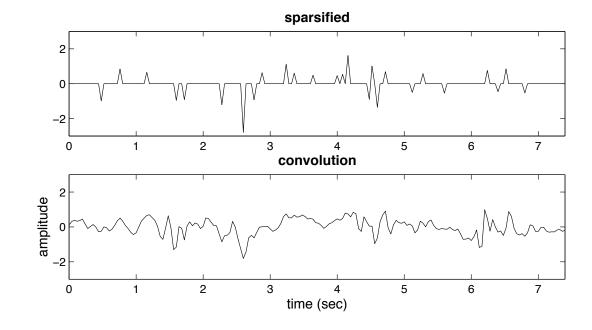
Speed vs. direction





Sparse coding and reconstruction





Movie synthesis

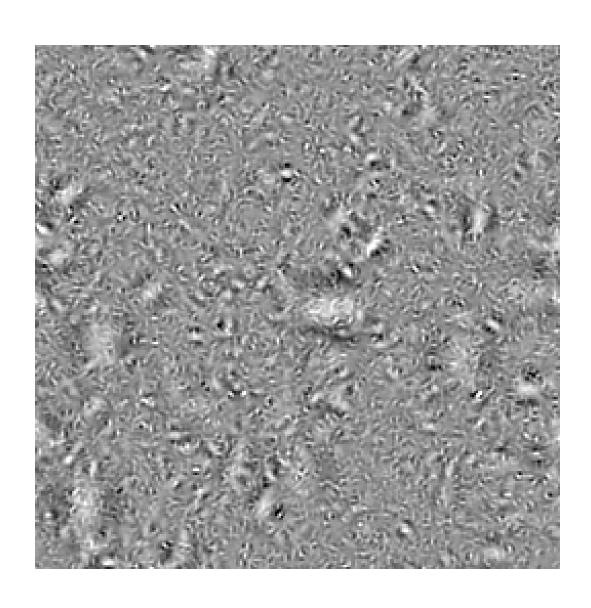
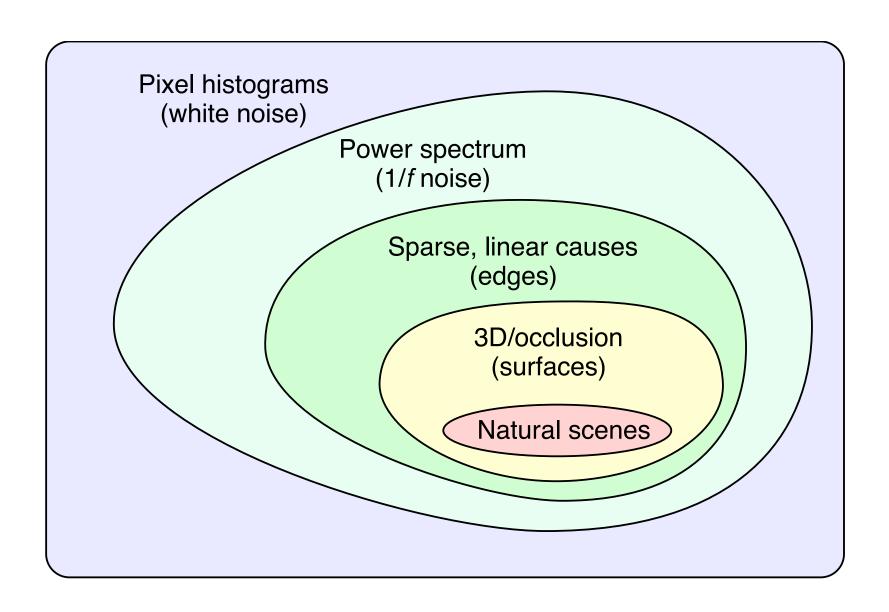


Image models



Using generative models as experimental tools

