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Sparse coding

Sparse coding is based on the linear generative model:

x = As + n (1)

where x is a data vector (e.g., pixels from an image patch, or a sound waveform), A
is a matrix of ‘features’ or basis functions (each column is a different basis function),
s is a vector of coefficients, and n is a vector of Gaussian ‘noise’ (typically i.i.d.). The
aim here is to find a set of basis functions A which allow the data x to be represented
as a set of sparse coefficient values s (lots of zeros on average). Usually the basis
function matrix is overcomplete (more columns than rows), and the noise term is
small relative to As and is included to account for residual structure that is not well
described by the basis function model.

The model distribution is given by

p(x) =
∫

p(x|s) ps(s) ds (2)

If we assume Gaussian i.i.d. noise n with variance σ2
n then the conditional distribution

p(x|s) is given by

p(x|s) ∝ e
− |x−As|2

2 σ2
n (3)

The prior ps(s) is parameterized as

ps(s) ∝ e−
∑

i
C(si) (4)

where C( ) specifies the shape of the distribution over each element si and is chosen
to correspond to a ’sparse prior’—i.e., peaked at zero with heavy tails. For example,
choosing C(si) = |si| corresponds to a Laplacian prior, which has the desired shape.
Note that we are also assuming a factorial prior on s for now, but that is mostly for
convenience—it is not required for sparse coding in general.

Learning the basis function matrix A is accomplished by maximizing the average
log-likelihood of the model via gradient ascent:

∆A ∝ ∂

∂A
〈log p(x)〉 (5)
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where 〈 〉 denotes averaging over the entire set of data vectors x. This yields the
learning rule:

∆A ∝
〈∫

[x−As] sT p(s|x) ds
〉

(6)

Thus, learning the basis functions requires us to sample from the posterior p(s|x) and
accumulate the average of the outer product [x−As] sT from these samples.

Sampling from the posterior can be very slow, so in practice we take a single
sample at the posterior maximum:

ŝ = arg max
s

p(s|x)

which is equivalent to minimizing the negative log-posterior:

ŝ = arg min
s

− log p(s|x)

= arg min
s

[
λn

2
|x−As|2 +

∑
i

C(si)

]
(7)

where λn = 1/σ2
n. Note that there is a simple, intuitive interpretation of equation

(7): minimize squared error of the reconstruction (first term) plus a cost function on
coefficient activity (second term). Minimizing this function can be accomplished via
gradient descent, yielding

ṡ ∝ λn [b−Gs] − z(s) (8)

where b = AT x, G = ATA, and z(s) has elements

zi = C ′(si) (9)

The solution ŝ is obtained when ṡ = 0. Note that this differential equation can be
implemented as a recurrent neural network with feedforward excitation b, recurrent
inhibition Gs, and non-linear self-inhibition z(s).1

The overall learning procedure thus involves a fast inner loop in which the coeffi-
cients ŝ are computed for each data vector x via equation 8, and a slower outer loop
in which the basis functions are adapted to the statistics of the entire dataset. The
latter part is done by replacing the posterior p(s|x) in equation 6 with the posterior
maximum computed in equation 8, yielding the learning rule:

∆A ∝
〈
[x−A ŝ] ŝT

〉
(10)

This essentially amounts to Hebbian learning between the residual [x−A ŝ] and the
inferred coefficients ŝ.

If you want to try out this algorithm you can download the Matlab code from my
webpage at http://redwood.berkeley.edu/bruno/sparsenet.

1This method has been superceded by the recently developed Locally Competitive Algorithm
(LCA), which generally provides a more efficient solution that is also neurally plausible, see Rozell
et al., Neural Computation, 20, 2526-2563.
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ICA

ICA (independent component analysis), as it is typically applied, is a special case of
sparse coding where the matrix A is square and of full rank, and n = 0 (no noise).
Thus the image model reduces to

x = As (11)

Since the matrix is invertible we now have a simple way to compute the coefficients:

s = A−1x (12)

In general the prior in ICA need only be non-Gaussian, although it is typically as-
sumed to be sparse (e.g., Laplacian). As equation (12) shows, the prior now plays
no role in determining the coefficients, but it does still play an important role in the
learning as we shall see.

Since there is no noise in the ICA model, the conditional distribution p(x|s) col-
lapses to a delta function

p(x|s) = δ(x−As)

and so the model distribution becomes

p(x) =
∫

δ(x−As) ps(s) ds

= ps(A
−1x)/| detA| (13)

Thus, the log-likelihood of the model is now

log p(x) = −
∑

i

C(si) − log detA (14)

where si = (A−1x)i, as in equation (12) above. Computing the derivative with respect
to A yields the learning rule:

∆A ∝ 〈[AT ]−1 z(s) sT − [AT ]−1〉 (15)

(Note: to obtain this result one must use the identity ∂
∂Aij

(A−1)kl = −(A−1)ki (A
−1)jl).

Unfortunately this learning rule involves a matrix inverse which can make it unstable
during learning. In practice one finds that the learning rule is made more efficient by
pre-multiplying by AAT , which cancels [AT ]−1, thus yielding the learning rule:

∆A ∝
〈
Az(s) sT −A

〉
(16)

(This is also known as the “natural gradient.”) Since the basis functions A are
changing slowly with respect to s and z, we can bring them outside the averaging
brackets, yielding

∆A ∝ A 〈z(s) sT 〉 −A (17)

The ICA learning algorithm (eq. 17) is simpler and faster than the sparse coding
algorithm (eq. 10) because s can be computed from the data x in a single feedforward
pass using equation (12). z is then computed directly from s via equation (9). The
statistics 〈z sT 〉 are computed for a large chunk of data and the basis function matrix
A is then updated using equation 17. This process is repeated until the basis functions
converge to a solution.
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Why ‘ICA’ is a misnomer

When most people say ‘ICA,’ they really mean linear ICA - i.e., using the linear
generative model above. However this is a very simple model and it is not generally
capable of yielding truly independent components for most real datasets (unless you
are doing source separation of a small, finite number of truly independent, linearly-
mixed signals). Usually the components recovered still exhibit statistical dependen-
cies, and so one is left with the awkward task of modeling the “dependencies among
the independent components.”

Note that one can not even claim that ICA is trying to recover components that
are “as independent as possible,” because the independence assumption is just one of
several properties of the ICA model. Overall there are three properties of the model
which are being fit to the data:

1. linear superposition, x = As,

2. the shape of the prior over each of the components, psi
∝ eC(si), and

3. the joint prior over the entire set of components, which is factorial: ps(s) ∝∏
i psi

.

The basis function matrix A is changing during gradient descent so as to satisfy all
three of these assumptions as best as possible (as measured by the log-likelihood).
To the extent any one of them is wrong, then the model will still try to satisfy the
other assumptions. Thus to the extent that the data can not be described as a linear
superposition of independent components, the model will still try to accommodate
the shape of the prior over each component, psi

. If it can better fit the prior over each
component by introducing more dependencies among them, it may do so. The final
solution for the basis functions will likely be some compromise between satisfying
the factorial assumption and the shape of the prior over each component. There is
nothing in the model that adjudicates in favor of the factorial assumption over the
shape of the prior.

The real power of ICA comes from the shape of the prior—i.e., the manner in
which it is chosen to be non-Gaussian (positive or negative kurtosis)—rather than
the fact that it is factorial per se. Indeed, some of the more recent extensions of ICA
utilize sparse, non-factorial priors (e.g., Hyvarinen’s “sub-space ICA”). Figuring out
how to express and specify the non-factorial prior turns out to be one of the more
important issues in these models.

The term ‘ICA’ is thus in some sense a misnomer. An alternative is to call this
class of models sparse component analysis (SCA), or sparse, linear component analysis
(SLiCA), the goal of which is to decompose data into sparse components so as to make
it easier to model the dependencies among them.
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