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Until recently therc have been no convincing quantitative measurements on the rates of
infbrmation transmission in real neurons. Here we review the theoretical basis for making
such measurements, together with the data which demonstrate remarkably high information
rates in a variety of systems. In fact these rates are within a factor of two of the absolute
physical limits set by the entropy of neural spike trains. These observations lead to sharp
theoretical questions about the structurc of the code and the strategy for adapting the code to
different ensembles of input signals.

l. Introduction

Animals receive information from the world in the form of continuous
functions of time - sound pressure at the eardrum, light intensity at each point
in the visual f ield, the concentration of various substances in the air,.... At a
very early stage in processing, however, these continuous signals are converted
into discrete sequences of identical pulses, called action potentials or spikes. In
each sensory neuron the spikes are all identical; information is carried only by
the arrival t imes [1]. The dynamics by which these spikes are generated and
propagated over relatively long distances from cell to cell are understood in
molecular detail [10,25]; what is not known is how one should think about this
encoding of the world from a computational or information theoretic point of
view: How much information is carried by the spike train of a single cell? How
does the representation of signals in spike trains affect the kinds of computa-
tions that the nervous system can accomplish? How is information shared
among the many cells which, for example, carry signals from the eye or ear to
the brain? out of all the possible strategies for converting continuous signals
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into discrete spike trains, is there anything special about the strategy which is

chosen in real brains? Is there anything universal about this strategy?

Recently it has become possible to give a much more quantitative analysis of

neural coding in several different sensory systems. These experiments hint at

some universal features of the code. The key experimental facts are described

in two recent theses [19,30], and in several brief reports f6,20,22,311; Ref. [21]

is  wr i t ten for  physic is ts .  To summarize:

(1) Very high information rates. In the extreme, a mechanosensor in the

cricket provides 300 bits per second of information about time-varying

displacements of the sensory hair.

i) AiSn coding efficiency.In the cricket and in a frog vibration sensor the

rate at which the cell transmits information about the input signal is within a

factor of two of the absolute limit set by the entropy per unit time of the spike

train.
(i\1) Linear decoding. Despite the evident non-linearities of the nervous

system, spike trains can be decoded by simple linear filters. Specifically,

if the input signal s(/) is chosen from some reasonable probability

distribution P[s(r)] and the spikes arrive at t imes {r,}, then the l inear estima-

tor

s . . , ( r ) :  z  K l \ t - t , )
I

is very good, and the addition of non-linear terms -Kt(,t-t i,t- /r) does not

improve the quality of the estimate. This linear decoding exists under

conditions where, for example, the relation between the input signal and the

mean rate of spiking is strongly non-linear.

(iv) Moderate signal-to-noise ratios. All these examples of high information

transmission rates correspond to cases where the estimate of the signal achieves

a signal-to-noise ratio of order unity over a broad bandwidth, rather than a

high SNR in a narrow band.

Several authors have argued that neural circuitry is in some sense designed

to optimize the system's representation of the sensory world from an informa-

tion theoretic point of view L2,3,'7,12,13,24,21,29f. This is a very attractive

hypothesis, and would fit with the general idea that the sensory systems reach

fundamental physical l imits to their performance [4,5]. Tests of the optimal

coding idea, however, have been indirect - one tries to calculate some property

of the optimal code (e.g., spatial f i l ters or "receptive fields" for visual

neurons) and check this against data on real neurons' But which features

of the code are essential? Our strategy is to make a more direct attack on

( 1 )
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the problem, measuring information rates and comparing with the physical
l imits.

2. How we measure information rates

Until recently there were no direct measures of the rate at which the spike
train {r,} in a sensory neuron provides information about continuously varying
sensory signals s(r). In the absence of data, speculations ranged over several
orders of magnitude [14,28]. The information which the spike train provides
about the stimulus is [9,26]

r _  t _  1P [s ( r ) : { r , } ]  \1[ { t ' } -+s(z) ) :Jo t ,JDsP[s( r ) ; { ' ' } ] tog , ( f f i ] / ' (2 )

where J Dr, is shorthand for integration over all arrival t imes /r, tz, . . ., /, and
summation over all spike counts N on the time interval 0 < r < Z, and J Ds as
usual denotes an integration over the space of functions s(r). Information is
measured in bits, hence log, P[s(r)] is the a priori distribution from which the
signal is drawn in a given experimental or natural situation. In the experiments
of refs. U9,30] we start with the simplest case where this distribution is
Gaussian and hence completely characterized by the signal power spectrum
(two-point function) s(o). we can rewrite the transinformation in the form

1[{r ,}-+ s(") ]  :

The first term is the entropy of the distribution P[s(r)], which we can assume is
known since it is under the control of the experimenter. But the second term is
the entropy of the conditional distribution P[s(r)l{r,}], averaged over the
distribution of spike trains P[{r,}]. Measuring the information transmission of a
sensory neuron requires measuring this entropy of the conditional distribution,
but in a real experiment all we have are samples drawn out of this distribution.

The problem of quantifying information transmission is rather like being
asked to "measure" the entropy of a box of fluid. In fact this cannot be done,
because the entropy is not an observable in the usual sense. One can measure
entropy changes, but only because these are related to heat flows; there does
not seem to be an informational analog of heat. As a compromise, one can

- 
/ 

o' P[s(r)]log, P[s(z)]

- 
Io,,p[{r,}] (- / * p[s(r)l{r,}] log, p[s(r)l{r,}]) . (3)
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bound the entropy of the fluid. At a trivial level, the entropy is surely less than
that of an ideal gas of the same density. The accuracy of our estimate depends
on how well we understand the correlations in the system.

The entropy of a distribution is always less than that of a Gaussian
distribution having the same mean and variance. This leads us immediately to a
lower bound on the transmitted information.

1 r
t -  

" iz  f  or , r [ { r , } ] : I r tn[Slr- ' ( { r , } ) ]  ,  (4)
t t n / .  J

where N({/,}) is the covariance of the fluctuations in s(l) around the condition-
al mean.

and S is the covariance of the signal in the a priori distribution P[s(r)]. Finally
s ince ( lnx)  < ln(x) ,  the rate of  in format ion t ransmiss ion is

I  l d l )  i S ( O ) r
R," , , , :  j ' I  1 [ { r , } -  s ( r l l tT  =  znz j  ; ' " (F@)  /  .  (6 )

where ItllO; ls the power spectrum of fluctuations around the conditional mean

averaged ovcr spikc trains, and S(O) is the signal power spectrum as before.

Note that although l/({1,}) described non-stationary fluctuations, the average

over spike trains restores time-translation invariance and allows the definit ion

of the power spectrum. If we construct some arbitrary estimator which takes as

input the spike train {t,} and returns some estimate of s(r), then the power

spectrum of errors in this estimate l/.,,(O) wil l always be greater than or equal

to N(O), since the conditional mean is also thc optimal least-square estimator.

Hence

(r; {r,}) = 
/ o, P[s(r)l{r,}]s(r) , (s)

I  tda  /  s (a \  \
R,n,, ) 2lr 2 J 2" l"\ At_11, / ( 7 )

Clearly if we choose a bad estimator this bound will be far below the true

information rate.
We thus arrive at a simple experimental strategy: Try to construct a box

which takes as input the spike train {r,} and delivers as output an estimate

s",,(t) of the unknown, continuous stimulus chosen from the ensemble P[s(z)].

If we can parameterize this box, choose the parameters so as to minimize the

mean-square deviation 112,) between the estimate and the true signal. Finally,

the power spectrum of the errors will provide a lower bound on the informa-
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t ion rate through eq (7). In simple models [8] of the encoding process, the
computation of the conditional mean s(r; {t,}) is analogous to the computation
of the time-dependent expectation value of a quantum-mechanical coordinate
subjected to an external force F(r) cc I 6(t - t,). This suggests writing our
estimate in terms of the usual hierarchy of response functions,

s" . , ( / ) :?  
" , t r  

-  t , )  + i2 * .u -  t , . t  - r r )  +. . . ( 8 )

It is important to realize that this expansion is different than, for example, the
expansion of t ime-dependent fir ing rates in terms of powers of the signal.
Analysis of the model in ref. [8] shows that the input/output relation of the
neuron can be strongly non-linear, yet .r""r wil l be dominated by K, if the
incoming signals are appropriately filtered; we return to this point below.

This approach was first tested in experiments on an identified neuron in the
fly visual system [6]. The cell responds to rigid horizontal movements across
the visual field, and produces a signal involved in the stabilization of straight
flight. In this case the term K, is sufficient to give extremely precise estimates
of the angular velocity waveform, and the addition of K" terms does not
s igni f icant ly  reduce x ' .  oue,  a l imi ted bandwidth we can make a st ronger
statement: The noise level in the estimates approach the l imits imposed by
noise in the photodetector array, so it would be impossible to improve the
estimate no matter how many terms in the series (8) one wishes to include.

The success of l inear decoding now extends to sensory neurons in a wide
variety of systems: A simple mechanical sensor in the cricket [30,31], a
vibration sensor in the frog inner ear ll9,22f , the two acoustic sensors of the
frog inner ear [19,20], and the optic nerve of the saramander [32]. In each case
"success" is first cefined perturbatively to mean that inclusion of K, terms does
not substantially reduce the errors in the estimated signal waveforms; in the
one case where small but real improvements do occur, it was checked that K.
does not produce statistically significant changes. In all these cases the errors in
the reconstruction are Gaussian to a good approximation, so we expect that
our bound in eq. (7) wil l be quite tight. The cricket provides the highest
information rates, but the information per spike is comparable in the frog. In
these cases we can also estimate the entropy of the spike train, and find that
the information which the spikes provide about the stimulus is at least half of
the spike train entropy. This shows that the coding efficiency is high - more
than half of the degrees of freedom carry information - but also that the
"success" of l inear decoding is again not just perturbative, since it is not
possible even in principle to extract much more information.

Finally, although the absolute noise levels in the reconstructed waveforms



586 W. Bialek et al. I Information flow in nelvous system

can be quite small - sufflcient in the cricket to give nanometer precision in
estimating the displacement of the sensory hair - the signal-to-noise ratio is
moderate, of order one or less in many cases. If the Gaussian signals are
embedded in a background of Gaussian noise, then from Shannon we know
that the information rate is Rin,,, : A,f logr(1 + SNR), where A,f is the band-
width. Evidently widening the bandwidth provides a greater increase in
information than a comparable increase in signal-to-noise. In the cricket the
300 bits per second in fact arises (roughly) from an SNR of unity over a 300 Hz
bandwidth.

3. Why does linear decoding work?

We have presented the process of decoding spike trains purely as a device for
estimating information transmission rates. However, it is remarkable that such
a simple strategy as linear filtering produces estimates sufficient to extract
several bits of information per spike. Why does this work? The key is to think
about the correlation time r. of the signal (as seen through any filters in the
neuron or previous cells) in relation to the typical inter-spike intervals. Clearly
the occurrence of a single spike tells us something about the signal within a
time window of roughly +r. around the spike itself. l f the next spike occurs
much later, with an interval r),r., then this spike gives us independent
information about the signal and the contributions of the two spikes to our
estimate of the stimulus waveform must just add. This suggests that our

expansion of the optimal estimate in eq. (8) is really an expansion in (r)r., and
this can be verif ied by detailed perturbation theory calculations in the model of
ref. [8].

Linear decodability thus defines a regime of neural dynamics in which each
significant variation in the signal (on time scale r") triggers of order one spike
or less. This is almost the opposite picture from that suggested in rate coding
models [28], where information is carried only in windows of time which
contain several spikes, enough to form a reasonable estimate of the firing rate
over the window. Is there any evidence concerning the value of (r)r"?
Modulations in many biologically significant sounds (speech, bat echolocation,
frog calls, cricket chirps, . . .) occur on time scales -5-20 ms, during which
time a cell firing 100 spikes per second can generate just one or two spikes. In
the fly visual system movements across the visual field result in the generation
of a compensating flight torque within 30 ms, during which time the handful of
movement-sensitive neurons can generate just a few spikes each (see ref. [23]).
In the mammalian visual cortex, preattentively discriminable textures produce
an average of 1 to 3 spikes per cell within the 50-100 ms behavioral decision



W. Bialek et al. I Information flow in nervous system

t ime [11], while optimally chosen moving gratings produce modulations of less
than 3 spikes per 100ms (see, for example, ref. [18]).

If we imagine that spike generation is a Poisson process whose rate r(l) is
determined by the stimulus s(r), one can prove that the rate at which the spike
train provides information about the stimulus is bounded by

587

R,n,o { (<'l '.r,(fr)) . (e)

The key to the proof is that the Poisson process has the maximum entropy of
any point process with the same mean rate, and the inequality is saturated
precisely in the l imit (r)2.-+0, which would guarantee l inear decoding! This
provides us with a hint that linear decoding may make sense for real neurons if
the code has been "designed" to maximize information transmission.

4. Perturbation theory

As a model for spike generation let us imagine that the signals s(r) are
presentcd in a background of noise 4(r), and that the signal plus noise are
passed through a fi l ter F(r). The resulting waveform

+ n(t ')l (10)

triggers a spike each time it crosses a threshold 0 with positive slope. For
simplicity let us assume that both the signal and noise are drawn from Gaussian
distributions, characterized by the signal and noise spectral densities S(J2) and
N(A), respectively.

The threshold crossing model misses the refractoriness of real neurons, as
well as the possibility that the cell is driven into a regime of self-sustained
oscil lation. Even without refractoriness, however, very short inter-spike
intervals are suppressed. what we are missing should be negligible if the
crossings are sufficiently infrequent, and in the extreme case the spikes will
approximate a Poisson process. There is a substantial literature on the
description of sensory neuron fir ing in terms of Poisson processes modulated by
the incoming signal (see references in t5,8]) Although there are clearly
deviations from this picture, it seems to be a good zero-order model of many
systems. we wil l expand systematically around the Poisson limit, and try to
show self-consistently that there is a near-Poisson optimal coding strategy. This
leaves open the possibil i ty that, in some cases, other optima exist far from the
Poisson limit.

yr l :  Idr  F(z) ls(r  r )
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In the threshold crossing model the probability distribution of the spike train

conditional on the signal is given by

I I r r ' jl \
P[{ r , } ls ( r ) l :  ,ur  ( . *o( -  Jdr  p( r1)  f I  a t r , r ) -

p( t )  :D(y( t )  -  s)  y( t )  uU,( t ) l  .

(  1 1 )

(12)

where (' '  '), denotes an average over the distribution of the noise. We see that

P[{r,}ls(l)] is the (normalized) average of a product of terms. In the Poisson

limit each term is statistically independent, which suggests a cluster expansion,

(  13)

If the correlation terms are small we can make use of the hypothesis that a(r) is

Gaussian to expand once more,

, r1r,; g(ri) ), : ( s0,) ), ( s(r,) ),

* l"0, l "0, ' (n(,r4(, ' ))(Pq) (39) + . . . .  (r4)
J  " '  J  " '  \ ' ' \ '  '  ' ' \ '  

"  \  E l ( l )  / " \ 6 1 ( r ' ) / "

(-fl rr,,r):n (s(r,)) (r .+>,#ffiP". )

where of course

\n(t)n(t ')) : IXe 
'"( '- ' ')N(r2) .

takes the s imple form

R , n , o :  R r  +  R 2  +  " '  .

R, : _, r_ rL I * Vrn ) l 's(o, [ '" (#) -
O  l l l l L  z r

(1s)

These expressions are all we need to generate a systematic expansion of the

information rate (M.D. and W.B., unpublished).
Motivated in part by the experimental results summarized above, let us look

first at the small signal-to-noise ratio limit, where we can expand the

distribution P[{t,}ls(r)] in powers of s(r). In this l imit the information transfer

I

t 1r2")' I
a l

(16)

(17)

(  1 8 )R. : ;hl *V,n)t 'sro)r/(o) [ '"(#) *[ rn,f) '
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The first term arises from the poisson limit, and the second term gives a
correction proportional to the mean number of spikes per correlation time as
seen at the output of the filter F. We have defined

.  r  da . -
a' :  

J 2n lF(t) t l ' lYlO) . (1e)

(20)

and eliminated the threshold g in favor of the mean spike rate

r  /  02 \
r :  

2 n " " P \  , r t ) (2r)

_2  r  I da
7  :  r l .

C.  J / . IT lFpll 'rt 'zNpy ,

Wc now try to argue that this admittedly crude expansion contains the essence
of the problem.

5. Optimal thresholds and adaptation

we can state a variational principle for the neural code, namely that the fi l ter
F(r) and the threshold d should be chosen so as to maximize R'nro. Eqs.
(16)-(18) give us an approximate expression for R,,,,, which we can use to
make this principle explicit. clearly the optimal f i l ters wil l depend on the signal
and noise spectra, which makes sense. Let us suppose that these fi l ters have
been found. Then we are left with the problem of optimizing the threshold, or
equivalently (from eq. (21)) the product rr.

First a question: what happens if the signal so is presented in a dc
background, so that the mean signal is not zero (as assumed implicit ly)? In a
linear or wcakly non-linear system, constant offset at the input results in
constant offset at the input, with no effect on information transmission. In
neurons' however, thc only output of the cell which can bc measured reliably is
the arrival t ime of the spikes; all subthrcshold voltage variations are attenuated
in propagation along the axon unti l they are ult imately obscured by noise. As a
rcsult the output {r,} is not an invertiblc function of the input. constant input
signals are then relevant, and to maximize information transmission these dc
terms must be ignored by the cell. euantitatively, if the signal s(r) acquires a dc
offset' thcn the value of the threshold which maximizes the information
transmission is offset by exactly the same amount, so that the constant sisnal
has no ef fect  on the f i r ing ratc.

It has been known since the init ial experiments of Adrian, Hartl ine and
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coworkers that sensory neurons adapt to constant stimuli [1]. Traditionally it

has been assumed that this adaptation represents a mechanism by which the

organism chooses to ignore "uninteresting" static signals. In this point of view

adaptation seems a sort of optional strategy; after all, why not wait for higher

processing centers to decide what is truly "interesting"? The present analysis

suggests that such an adaptation is necessary to insure maximum information

transmission: The organism does not have the choice of discarding uninterest-

ing signals at a later stage, since responding to the static signal would preclude

the transmission of information about dynamic signals.

Returning to the problem of optimizing threshold, consider the simple case

where both the signal and noise spectra are nearly constant (white), so that all

of the dynamics are contributed by the filter F. To proceed analytically we

want this fi l ter to have a single characteristic t ime, so let us choose

lFttt l l  c(exp[ (al2tz]. Then the information rate becomes

S r t
R , n r . : F l n 2  g l r r ) ,

g(x) :'['"(*) . ;] -"'1,,,;"'{[rn(*) . +]' . +\.

(22)

(23)

The optimum is reached when rr :0.12, and at this point the correction to the

information rate derived from inter-spike correlations is less than ten percent.

This confirms that there exists an optimal setting of the threshold which results

in a spike t ra in near  the Poisson l imi t .  At  the opt imum R,n, . , l r :1 .58(S/N)

bits/spike. If we extrapolate to S/N: 1 the prediction is within a factor of two

of the observed 3 bits per spike observed in the cricket, although certainly

higher terms in the S/N expansion should be significant at this point. In the

frog acoustic sensors, where S/N in response to white signals is smaller, the

information rates are close to the predictcd - bit per spike'

6. Temporal jitter and coding efficiency

Until now we have assumed that the spike arrival times {r,} are measured

with infinite precision. Imagine instead that the spikes are j ittered with timing

errors of standard deviation 6r.-.. Then it can be shown that the first term in

our expansion (R,) is modified in a simple way,
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n,-- ; { , "*nnl l 's(o)  t l  -  (o 6, . - , ) ,  + . . .1

, ['.(#) *]rno'f
If the spikes are counted in bins of width Az, the same first order correction
occurs but with 6r,-,: Lrl\/12. ln the case of the Gaussian fi l ter discussed
above,

R , - R , ( A r  :  0 X 1  -  ( 3 . 5 6 r A 2 ) ' ?  +  .  .  . 1 , (2s)

where we have substituted the optimal relation between r and r. Thus we see
that ninety percent of the information is preserved when r Ar - 0.09, and
ninety-five percent is preserved at r Lr -0.06, within a factor of two of the
results in the fly, cricket and frog vibration sensors [6,2r). we see that optimal
information transmission is possible with only modest demands on timins
precis ion.

when viewed through bins of (small) width Ar, a poisson process has an
entropy per event

(24)

(26)
^ l

J: - 
rA? lr Lrlogr(r Ar) + (1 - r Lr) log,(1 - r A^r)l

or 4'85 bits per spike at r L,r :0.09; in reality the entropy of the spike train wil l
be slightly lower due to correlations, but these are small at the point of
optimum information transmission. The coding efficiency is

R'"r.(Ar)
- r S

(0.e)1.s8(s/ tv )

Again this is within a factor of two of the best
with cases where S/N is indeed small.

7. Tentative conclusions

(27)

results, and in close agreement

The idea of coding with (r)r. - 1 seems to tie together our different
observations on the neural code. There is clearly an optimal setting of the
spiking threshold at small (r)r., and information rates, coding efficiencies and
fault tolerance of the code at this operating point are all in reasonable accord
with experiment. If onc carries the theory out to higher signal-to-noise ratios,
the optimal setting of the threshold must adapt not only to added mean signals

4.85
- 0.3(s/N)
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but also to the magnitude of the signal variance. This form of adaptation is not

much discussed in the l iterature, although there is certainly evidence for it in

the vertebrate retina [15]. Finally, everything we have said has a natural

generalization to arrays of neurons, and it has recently become possible to

explore these arrays experimentally [16'171'
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