VS298: Reading: Difference between revisions
(→21 Oct) |
(→21 Oct) |
||
Line 88: | Line 88: | ||
==== 21 Oct ==== | ==== 21 Oct ==== | ||
* | * [http://connes.berkeley.edu/~amir/vs298/attractor-networks.pdf Handout] on attractor neural networks | ||
* [http://connes.berkeley.edu/~amir/vs298/hopfield82.pdf original Hopfield (1982) paper] | * [http://connes.berkeley.edu/~amir/vs298/hopfield82.pdf original Hopfield (1982) paper] | ||
* HKP Chapters 2 and 3 | * HKP Chapters 2 and 3 |
Revision as of 21:08, 23 October 2008
For each lecture, we also have a list of optional reading corresponding to ideas discussed in lecture. You may read these if you are interested in the particular topic: Optional Reading
2 Sep
- Bell, A.J. Levels and loops: the future of artificial intelligence and neuroscience. Phil Trans: Bio Sci. 354:2013--2020 (1999) here or here
- Dreyfus, H.L. and Dreyfus, S.E. Making a Mind vs. Modeling the Brain: Artificial Intelligence Back at a Branchpoint. Daedalus, Winter 1988.
- Mead, C. Chapter 1: Introduction and Chapter 4: Neurons from Analog VLSI and Neural Systems, Addison-Wesley, 1989.
- Jordan, M.I. An Introduction to Linear Algebra in Parallel Distributed Processing in McClelland and Rumelhart, Parallel Distributed Processing, MIT Press, 1985.
- Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. PNAS, 97: 5621–5626.
04 Sep
- Linear neuron models
- Linear time-invariant systems and convolution
- Simulating differential equations
- Carandini M, Heeger D (1994) Summation and division by neurons in primate visual cortex. Science, 264: 1333-1336.
Optional reading for more background:
16 Sep
- Handout on supervised learning in single-stage feedforward networks
18 Sep
- Handout on supervised learning in multi-layer feedforward networks - "backpropagation"
- Y. LeCun, L. Bottou, G. Orr, and K. Muller (1998) "Efficient BackProp," in Neural Networks: Tricks of the trade, (G. Orr and Muller K., eds.).
- NetTalk demo
23 Sep
- Handout: Hebbian learning and PCA
- HKP Chapter 8
- PDP Chapter 9 (full text of Michael Jordan's tutorial on linear algebra, including section on eigenvectors)
25 Sep
- HKP Chapter 9
30 Sep
- Foldiak, P. Forming sparse representations by local anti-Hebbian learning. Biol. Cybern. 64, 165-170 (1990).
- Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 381: 607-609. (1996)
2 Oct
Optional readings that covers material in lecture in greater depth:
- Rozell, Johnson, Baraniuk, Olshausen. Sparse Coding via Thresholding and Local Competition in Neural Circuits, Neural Computation 20, 2526–2563 (2008).
- Simoncelli, Olshausen. Natural Image Statistics and Neural Representation, Annu. Rev. Neurosci. 2001. 24:1193–216.
- Smith, Lewicki. Efficient auditory coding, Nature Vol 439 (2006).
7 Oct
A handout on sparse coding and on 'ICA', something we haven't yet discussed:
Dayan and Abbott has a nice section on sparse coding in Chapter 10. This is on the syllabus for unsupervised learning already, but you may want to focus on section 10.3 and 10.4.
Here is a link to Compressive Sensive Resources at Rice. It has an enormous number of recent papers related to compressed sensing and sparse coding.
9 Oct
Here are a list of references for David Zipser's talk: pdf. David also suggested the following chapter in an upcoming book by Thomas J. Anastasio: pdf (waiting for approval to post)
14 Oct
- Ocular dominance column development: Analysis and simulation by Miller, Keller and Stryker.
- A dimension reduction framework for understanding cortical maps by R. Durbin and G. Mitchison.
- The cortical column: a structure without a function by Jonathan C. Horton and Daniel L. Adams
Here are some additional links to papers mentioned in lecture. Optional reading:
- Gary Blasdel, Differential Imaging of Ocular Dominance and Orientation Selectivity in Monkey Striate Cortex, J Neurosci, 1992. Another source of many of nice images are in the galleries on Amiram Grinvald's site: [1]
- From Clay Reid's lab, Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Make sure you look at the supplementary material and videos on their web site (seems partly broken) [2].
16 Oct
- A Global Geometric Framework for Nonlinear Dimensionality Reduction , Tenenbaum et al., Science 2000.
- Nonlinear Dimensionality Reduction by Locally Linear Embedding, Roweis and Saul, Science 2000.
- On the Local Behavior of Spaces of Natural Images, Carlsson et al., Int J Comput Vis (2008) 76: 1–12.
Additional reading:
- Adaptation to natural facial categories, Michael A. Webster, Daniel Kaping, Yoko Mizokami & Paul Duhamel, Nature, 2004.
- Prototype-referenced shape encoding revealed by high-level aftereffects, David A. Leopold, Alice J. O’Toole, Thomas Vetter and Volker Blanz, Nature, 2001.
21 Oct
- Handout on attractor neural networks
- original Hopfield (1982) paper
- HKP Chapters 2 and 3